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FOREWORD

NASA experience has indicated a need for uniform criteria for the design of space vehicles.

Accordingly, criteria are being developed in the following areas of technology:

Environment
Structures

Guidance and Control

ChemicaI Propulsion

Individual components of this work will be issued as separate monographs as soon as they

are completed. This document, part of the series on Chemical Propulsion, is one such

monograph. A list of all monographs issued prior to this one can be found on the final pages
of this document.

These monographs are to be regarded as guides to design and not as NASA requirements,

except as may be specified in formal project specifications. It is expected, however, that

these documents, revised as experience may indicate to be desirable, eventually will provide
uniform design practices for NASA space vehicles.

This monograph, "Liquid Rocket Engine Nozzles," was prepared under the direction of

Howard W. Douglass, Chief, Design Criteria Office, Lewis Research Center; project

management was by Harold Schmidt. The monograph was written by J. C. Hyde and G. S.
Gill,* Rocketdyne Division, Rockwell International Corporation and was edited by Russell

B. Keller, Jr. of Lewis. Significant contributions to the text were made by A. T. Sutor,

Rocketdyne Division, Rockwell International Corporation. To assure technical accuracy of
this document, scientists and engineers throughout the technical community participated in
interviews, consultations, and critical review of the text. In particular, E. M. McWhorter of

Aerojet Liquid Rocket Company; M. T. Schilling of Piatt & Whitney Aircraft Group, United
Technologies Corporation; and J. M. Kazaroff of the Lewis Research Center individually and
collectively reviewed the monograph in detail.

Comments concerning the technical content of this monograph will be welcomed by the
National Aeronautics and Space Administration, Lewis Research Center (Design Criteria
Office), Cleveland, Ohio 44135.

July 1976

*Currently with Societe d' Etude de la Propulsion Par Reaction, France.
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GUIDE TO THE USE OF THIS MONOGRAPH

The purpose of this monograph is to organize and present, for effective use in design, the
significant experience and knowledge accumulated in development and operational

programs to date. It reviews and assesses current design practices, and from them establishes

firm guidance for achieving greater consistency in design, increased reliability in the end

product, and greater efficiency in the design effort. The monograph is organized into two

major sections that are preceded by a brief introduction and complemented by a set of
references.

The State of the Art, section 2, reviews and discusses the total design problem, and

identifies which design elements are involved in successful design. It describes succinctly the
current technology pertaining to these elements. When detailed information is required, the
best available references are cited. This section serves as a survey of the subject that provides

background material and prepares a proper technological base for the Design Criteria and

Recommended Practices.

The Design Criteria, shown in italics in section 3, state clearly and briefly wha..._._trule, guide,

limitation, or standard must be imposed on each essential design element to assure
successful design. The Design Criteria can serve effectively as a checklist of rules for the

project manager to use in guiding a design or in assessing its adequacy.

The Recommended Practices, also in section 3, state ho....._wto satisfy each of the criteria.

Whenever possible, the best procedure is described; when this cannot be done concisely,

appropriate references are provided. The Recommended Practices, in conjunction with the
Design Criteria, provide positive guidance to the practicing designer on how to achieve

successful design.

Both sections have been organized into decimally numbered subsections so that the subjects

within similarly numbered subsections correspond from section to section. The format for

the Contents displays this continuity of subject in such a way that a particular aspect of

design can be followed through both sections as a discrete subject.

The design criteria monograph is not intended to be a design handbook, a set of

specifications, or a design manual. It is a summary and a systematic ordering of the large and
loosely organized body of existing successful design techniques and practices. Its value and

its merit should be judged on how effectively it makes that material available to and useful

to the designer.
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LIQUID ROCKET ENGINE NOZZLES

1. INTRODUCTION

The nozzle of a rocket engine is a carefully shaped aft portion of the thrust chamber that

controls the expansion of the exhaust gas so that the thermal energy of combustion is
effectively converted into kinetic energy of combustion products, thereby propelling the
rocket vehicle. The nozzle is a major component of a rocket engine, having a significant

influence on the overall engine performance and representing a large fraction of the engine
structure. The design of the nozzle consists of solving simultaneously two different

problems: the definition of the shape of the wall that forms the expansion surface, and the
delineation of the nozzle structure and hydraulic system. This monograph deals with both

of these problems. The shape of the wail is considered from immediately upstream of the
throat to the nozzle exit for both bell and annular (or plug) nozzles. Important aspects of

the methods used to generate nozzle wall shapes are covered for maximum-performance

shapes and for nozzle contours based on criteria other than performance. The discussion of

structure and hydraulics covers problem areas of regeneratively cooled tube-wall nozzles and

extensions; it treats also nozzle extensions cooled by turbine exhaust gas, ablation-cooled

extensions, and radiation-cooled extensions. Treatment of materials and structures for
ablation-cooled and radiation-cooled nozzles and extensions is limited herein because these

subjects are treated in detail in references 1 and 2. Drilled-wall and channel-wall nozzles are
not treated in the monograph because these nozzles have seen limited service, if any, in

operational engines.

In general, the nozzle shape is selected to maximize performance within the constraints

placed on the system. This goal is relatively easy to achieve with the tools presently

available. Problems arise when unusual requirements introduce additional constraints that

are not readily handled. A typical example is the desire to maximize expansion area ratio to
obtain high vacuum performance from an upper-stage engine and still be able to ground test

the engine without the added expense of using' an altitude facility. Techniques for

developing nozzle contours that strike the best compromise between performance and

nonperformance considerations (e.g., testing expense or cooling method) are not well

defined;however, cut-and-try optimizations are possible with the present technology.

The nozzle structure of a large rocket must provide strength and rigidity to a system

wherein weight is at a high premium and the loads are not readily predictable. The
maximum loads on the nozzle structure often occur during the start transients before full

flow is established. The side loads on the nozzle during separated flow cannot be predicted



accuratelyin magnitude,direction,or frequencyandthereforepresenta difficult problem
to thedesignertrying to build a minimum-weightstructurethatwill withstandtheseloads.
The structureoften is designedoverly strong,on the basisof experiencewith similar
nozzles,with provisionsfor laterweightreductionincorporatedin theoriginaldesign.This
monographdescribesthe techniquesthat bestenablethe designerto developthe nozzle
structurewith aslittle difficulty aspossibleandat the lowestcostconsistentwithminimum
weightandspecifiedperformance.

I i



2. STATE OF THE ART

The nozzles used on liquid rocket engines inherently are very efficient components and are

highly refilled at the present state of development. The efficiency of these nozzles has been

improved less than 1 percent in recent years. The quest for higher performance has,
however, led to very large increases in area ratios. For example, the nozzle on the J-2 engine
used on the Saturn V second and third stages has an area ratio of 27, whereas the nozzle

planned for the Space Shuttle Orbiter Engine has an area ratio of over 77. With increasing
area ratio, the nozzle becomes a proportionally larger part of the engine with some

corresponding increase in importance. Because there is little to be gained by increasing
nozzle efficiency, most of the work in nozzle development has been directed toward

obtaining the same efficiency from a shorter package through the use of short bell* nozzles
and annular nozzles such as expansion-deflection (E-D) and plug (aerospike). Figure 1 shows

the various types of nozzles used on liquid rocket engines; the bell and conical are standard
operational configuraitons, while the annular bell, E-D, and plug are advanced-development

configurations. Tables I* and II* display the major features of the nozzles that have been
used on most of the operational liquid rocket engines. Nearly all of these engines have bell

nozzles. Most of the large engines have tube walls and are regeneratively cooled, whereas the

small engines usually are radiation- or ablation-cooled.

There is a recent trend away from tube-wall nozzles toward channel construction. Channel

walls provide better cooling in regions of high heat transfer of the nozzle by decreasing the

surface area exposed to the hot gas and increasing the thermal conduction from the exposed

surface area. The Space Shuttle Main Engine (SSME) has been designed for milled axial
coolant channels in the main combustion chamber and throat up to an expansion area ratio

of 5 and tube walls from an expansion area ratio of 5 to 77.5.

Considerable development work has been done on the plug nozzle; less has been done on the

E-D nozzle. These advanced configurations provide the same performance as the bell but

from a markedly smaller package. An annular bell nozzle was used on the Lance booster.

Plug and E-D nozzles have not been used on an operational engine system; however, the

probability of their use on future engines is high. It is not the purpose of this monograph to
cover advanced concepts, but because a large amount of work has been done on the plug

nozzle, this design is covered briefly ; the E-D nozzle is less important and is not treated.

2.1 NOZZLE CONFIGURATION

The nozzle configuration best suited to a particular application depends on a variety of

factors, including the altitude regime in which the nozzle will be used, the diversity of stages

in which the same nozzle will be employed, and limitations on development time or

funding.

*Terms, symbols, and materials are defined or identified in Appendix A.

Factors for converting U.S. customary units to the International System of Units (SI units) are given in Appendix B.



(a) Bell (b) Conical

(c) Annular bell (d) Expans lon-deflect ion (E-D)

(e) Plug (truncated aerospike)

Figure 1. - Basic types of nozzles used in liquid rocket engines.
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The propellant combination, chamber pressure, mixture ratio, and thrust level will, in most

cases, be determined on the basis of factors other than the nozzle configuration and

therefore will be inputs to the nozzle-selection study. These parameters have a minor effect

on selection of configuration, but a significant effect on the selection of nozzle cooling
method.

Payload from a given propulsion system is nearly constant over a wide range of any

independent variable (e.g., chamber pressure) in the vicinity of the optimum value for that
variable. Nozzle parameters therefore can be selected on the basis of preliminary

optimization studies. Iteration is not essential unless gross changes to tile preliminary data
are made.

Figure 2 presents a sketch of a typical bell-nozzle configuration and illustrates basic nozzle

nomenclature that will be employed in the monograph.

wal I

Flow Subsonic flow I
I

region I "
!

Transonic flow reglonJ

Upstream wall radius, Ru

Downstream wall radius, Rd

_xExpanslon wall"

\
Supersonlc flow

_; _ region

radius, R t
i _ "_---Throat

Figure 2. -- Sketch illustrating basic nozzle configuration and nomenclature.

2.1.1 Throat Geometry

The throat of the nozzle is the region of transition from subsonic to supersonic flow. For

typical rocket nozzles, local mass flux and hence the rate of heat transfer to the wall are

highest in this area. The shape of the nozzle wall in the vicinity of the throat dictates the
distribution of exhaust-gas flow across the nozzle at the throat. For the geometries used in

most rocket nozzles, this throat flowfield is independent of the nozzle geometry

downstream of the throat and for a distance of about one throat radius upstream of the

throat; the effect on nozzle performance of inlet flow to the throat is treated in reference 3.

The nozzle wall in the neighborhood of the throat usually consists of an upstream circular i



arc that is tangent to a downstream circular arc at the geometric throat. The radii of these

arcs are selected on the basis of a rough trade of performance and fabrication considerations

against cooling difficulty and weight.

2.1.1.1 UPSTREAM WALL

The nozzle wall geometry immediately upstream of the throat determines the distribution

of gas properties at the throat. Constant-radius arcs are used for the shape of the

throat-approach wall. A small radius is desirable both for minimum overall length and for

minimum wall area exposed to the high heat fluxes associated with flow near Mach 1.
However, as the radius decreases, the difficulty in obtaining an accurate solution of the

transonic flowfield increases. Existing transonic methods (e.g., ref. 4) are limited to radius

ratios of about 1.0 for accurate results. A computer solution (ref. 5) can generate accurate

results for radius ratios of 0.6 (ref. 6). Computer calculations using a power-series expansion

of the parabolic partial differential equations for transonic flow showed that the nozzle

aerodynamic efficiency remained constant for Ru/R t values from 1.5 down to 0.6. A nozzle

inlet of relatively large radius (R/R t = 1.4), however, has been shown to be effective in
boundary-layer film cooling through the nozzle throat.

In an annular nozzle, the throat is an annulus, not a circular opening of radius R t. The width

of the annular throat is referred to as the throat gap G t. This parameter has the same

significance in design as R t. For annular nozzles with both walls convex relative to the gas
and with equal radii, ratios of upstream wall radius to throat gap (Ru/G t) of 1.0 or more are
used. When both walls are convex to the flow but unequal in radius, the minimum solvable

radius ratio is larger than that for the equal-radius case.

Nozzle flowrate is directly proportional to the aerodynamic flow area at the nozzle throat.

This flow area_ designated k/t, is the geometric flow area A t corrected for the effects of
- . . .

nonuniform transonic flow. As shown in figure 3, the ratio At/A t (which is equivalent to
the discharge coefficient for potential flow) and thus nozzle flowrate decrease with

decreasing radius ratio. This effect can be predicted accurately with existing transonic
programs. Reference 7 presents information on flow coefficients in nozzles with throats of
comparatively small radius of curvature, at throat Reynolds numbers larger than 1 x 10 6 ;

for these nozzles, boundary-layer effects are not believed to be significant.

Most transonic solutions in current use are based on reference 8. The velocity distribution

along some reference streamline is assumed, the power-series form of the compressible-flow

equation is integrated numerically, and the wall is located by summing the flow in each

streamline until the desired mass flow is attained. The number of terms in the series required

to obtain an accurate solution depends on the wall geometry.

10
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The first solutions for transonic flow (e.g., the solution incorporated in ref. 4) were

developed for a thermally perfect gas. Later programs included the variation of specific heat

with temperature (ref. 9).

2.1.1.2 DOWNSTREAM WALL

For a given area ratio, maximum nozzle efficiency within a given length is obtained by using

a sharp-corner (zero-radius) transition between the upstream radius and the supersonic

contour. For tube-wall nozzles, however, the minimum-radius wall that can be fabricated is

limited by the radius to which the tubes can be bent. Similar limits to wall radius exist for

other methods of fabrication.

A downstream wall radius 0.4 times the throat radius usually is a good compromise between

fabrication difficulty and minimum nozzle length for tube-wall construction. A minimum

bend radius of twice the tube outside diameter is required for round tubes of relatively

ductile materials such as stainless steel, nickel, or copper. Difficult-to-work materials must

be limited to larger bend radii. For elliptical cross sections, the tube bend radius should be

greater than twice the major outside dimension of the tube cross section. For ablative

materials, the radius must be large enough to avoid shearing of the material during firing.

11



When the gas density is relatively low (low chamber pressure) or tile nozzle is relatively

small, the downstream-wall radius ratio Rd/R t must be large enough to provide expansion
slow enough to maintain chemical composition near equilibrium. If the expansion is too
rapid and a significant deviation from equilibriunl composition occurs near the throat,

important losses in perfornlance result for certain energetic propellant combinations. The

downstream wall geometry is selected primarily from a trade between chemical (kinetic)
performance, which increases with radius ratio, and aerodynamic perfonnance, which
decreases with radius ratio.

An additional design consideration for nozzles with a circular arc throat and a conical

divergence section is that tile nozzle wall geometry just downstream of the throat can have a
significant bearing on the heat transfer to tile downstream wall because the geometry can

subject the boundary layer to an adverse pressure gradient (ref. 10). Available experimental

information (refs. 10 and 11) for nozzles with a conical half-angle of 15° indicates that

Ra/R t probably should not be made smaller than about 0.75. Detection of oblique shock
waves arising from the downstream tangency region is discussed in reference 12. The

influence of nozzle wall geometry on methods to reduce heat transfer to the wall is
discussed in reference 13.

2.1.2 Expansion Geometry

The expansion geometry extends from the throat to the nozzle exit. The function of this

part of the nozzle is to accelerate the exhaust gases to a high velocity in a short distance
while providing near-ideal performance. Both engine length and specific impulse strongly

influence the payload capability of rocket vehicles. Considerable care is given to the design

of the nozzle expansion geometry in order to obtain the naaximum performance from a

length commensurate with optimum vehicle payload. When this requirement is not critical, a

simple straight-wall (i.e., conical) nozzle of desired length and half-angle greatly facilitates
tooling and fabrication and thus reduces cost. The conical nozzle generally is found on small

rockets. As noted earlier and as shown in table I, bell nozzles are used on all of tile larger

systems currently flying. The expansion surface of this type of nozzle is contoured for

optimum performance within a restrictive length and gives the nozzle a characteristic bell
shape. The length of a bell nozzle is generally specified as a percent (e.g., an "80% bell").

This expression designates the length of the bell nozzle as a percent of tile length of a
15°-half-angle conical nozzle having the same expansion area ratio.

The plug nozzle (spike nozzle) and the inverse plug nozzle such as the forced-deflection or
reverse-flow nozzle have not been operational; however, these nozzles are of general interest

because they can be made to flow full at large area ratios at sea level.

12
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2.1.2.1 BELL NOZZLE

2.1,2.1.1 Optimum Contour

The supersonic region of a bell nozzle is designed with the use of one of the many available

computer programs (e.g., ref. 14). The nozzle shape obtained is a mathematical optimum

based on a variational-calculus maximization technique described in references 6, 15, and

16. Although the optimization is mathematically accurate, the initial conditions (obtained

from the transonic solution) and the gas properties in the nozzle are approximate. However,

the shape of the nozzle is not sensitive to these parameters, and performance of a bell nozzle

is not sensitive to small variations from the optimum contour.

The availability of computer programs makes it possible to economically generate optimum

nozzle expansion geometries for rocket engines. Equilibrium gas properties are used in the

calculation of optimum wail contour. Programs for nonequilibrium gas composition have

been developed (ref. 17), but the extent of their application in rocket nozzle design is
uncertain.

Programs for calculation of the three-dimensional supersonic flowfield are available (ref.

18); these programs allow a cut-and-try design optimization within the geometric limitations

of tile programs. A simplified analytical procedure is to approximate three-dimensional

flowfieids with axisymmetric and plane flow sections. Cold-flow model testing is used
extensively to examine the performance of three-dimensional nozzles.

The loss in nozzle performance due to the viscous interaction of the expanding gas and the
nozzle wall is considered in the selection of the nozzle length and area ratio. The results

obtained from the various boundary-layer programs in use vary considerably (ref. 19). Most

of the current solutions for the boundary-layer thickness and drag in an accelerating flow

are based on the method given in reference 20. Details of the numerical procedure vary from

program to program, and this variation accounts for many of the differences in results.

Methods for boundary-layer analysis rely heavily on empirically derived coefficients for

friction and heat transfer. Figure 4 shows typical viscous-drag losses computed for rocket
nozzles. The nozzle drag loss was calculated by solving the boundary-layer

integral-momentum and -energy equations; the calculated loss was expressed as a percentage

of the nozzle thrust and plotted against a parameter that is roughly proportional to
Reynolds number.

For accurate performance prediction, boundary-layer displacement thickness is computed.
Under conditions where the boundary layer is unusually thick relative to the nozzle size, the

boundary-layer displacement thickness is computed and the wall is moved outward by the

displacement thickness point by point.

13
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Figure 4. - Computed performance loss due to viscous-drag effects in

bell nozzles (storable propellants).

Propellant combinations with very high combustion temperatures (e.g., fluorine/hydrogen)
in some cases exhibit performance losses of 5 to 10 percent unless the wall just downstream

of the throat is designed to provide an expansion rate slow enough to maintain composition

near equilibrium up to an area ratio of 2 to 5. A technique for direct optimization of the
nozzle contour for a reacting gas (nonequilibrium process) has been developed (ref. 17), but

it is very complex and not generally used. The method used for high-energy propellants is to

select a downstream wall geometry that provides a much slower expansion than the
minimum-radius configuration; then, at some specific point, terminate the

controlled-expansion walt, and design the remainder of the nozzle from the equilibrium

method. The performances of several configurations are computed, and the results are used

to select new configurations for further study or to settle on one of the geometries
examined.

The configuration resulting from this approach has a downstream throat curvature longer

than that required for a gas expanding at equilibrium conditions. The kinetic performance is

higher, but the possible aerodynamic performance is reduced because less of the given length

of nozzle from throat to exit is used for an optimum aerodynamic contour. If the designer

selects a number of controlled-expansion geometries and termination points, then repeats

the process, the final design can be based on comparative kinetic-plus-aerodynamic
performance. Actually, the flow composition "freezes" (remains constant) near the end of

the controlled section; however, a nozzle designed by this method will produce

14



near-optimumperformancefor the actual flow conditions.Experimentalprogramshave
shownthat thesenozzlesdo producehighperformanceunderthe conditionsinvestigated
(ref. 21).

2.1.2.1.2 Nonoptimum Contour

The available optimization methods are based on assumptions that often only roughly

approximate the actual conditions. Bell-nozzle contours obtained by the

mathematical-optimum design method vary only slightly with gas properties. For a given

area ratio and length, a single canted parabola will very closely approximate the variety of
optimum contours corresponding to the various chamber conditions that may occur in

rocket engines. For engineering purposes, near-optimum parabolic contours are suitable for

many applications and can be generated without using a computer. Figure 5 illustrates the

canted-parabola contour and shows initial and final wall angles for a range of area ratios and
lengths.
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Figure 5. - Canted-parabola contour as an approximation of optimum bell contour.

]5



Mathematical-optimum nozzles cannot be designed for all conditions. The design method
fails for nozzle lengths less than some minimum value, and this minimum length increases

with increasing area ratio. Figure 6 shows the range of local flow angles and Mach numbers

over which the mathematical-optimum design method of reference 16 will produce an

acceptable design.
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Figure 6. - Graphic display of region over which the mathematical-optimum method

for contour design can be used.

The contour of a high-performance nozzle can be obtained by designing an ideal nozzle to a

higher area ratio than required, so that when the ideal nozzle is truncated to the desired area
ratio the correct nozzle length is obtained (ref. 14). This type of nozzle is sometimes

referred to as an "optimum" nozzle; however, it can only approach the performance of the

mathematical-optimum design. Performance differences between these types of nozzles are
small. Unlike the optimum-design method, the truncated-ideal method can be used to design

a nozzle as short as desired.

As noted earlier, conical nozzles are used when performance and length are not critical and
minimum fabrication time and cost are desired. For low area ratios, cones can be used with

no measurable loss in performance. The performance of a straight-wall nozzle approaches
the results obtained from one-dimensional point-source flow analysis as area ratio increases,

16



but at low arearatios,the oscillationof divergenceefficiencywith arearatio,asshownby
the solid curvesin figure 7, affectsthe selectionof arearatio or wall half-angle.Shocks
emanatingfrom thebeginningof the straight-wallportion of the nozzlecanoccurin cones
(ref. 22).

2.1.2.1.30verexpanded Nozzle

Nozzles designed for vacuum operation have large expansion area ratios in order to achieve

high specific impulse. It is desirable to ground test engines in the course of the development

program. During ground testing, most altitude engines are overexpanded, often to the extent

that the exhaust gas separates from the nozzle wall. This flow separation can result in

serious problems. For example, a nonoptimum (parabolic) contour was selected for the

nozzle of the J-2 engine in order to raise the exit wall pressure. The high-exit-pressure nozzle
was supposed to run unseparated at an area ratio of 27 with a chamber pressure of 700 psi.

A wall-pressure minimum that occurred between area ratio of 14 and the nozzle exit

produced an unstable condition that caused unsteady asymmetric separation, especially

during the startup. The large loads that occurred caused various thrust-chamber structural

failures. A short bolt-on diffuser was developed to eliminate separation during mainstage
operation of the J-2 (ref. 23). Restraining arms were attached from the test stand to the

nozzle skirt to absorb the separation loads at startup.

Separation of flow occurs when the gas in the boundary layer is unable to negotiate the rise
to ambient pressure at the end of the nozzle. The exact- atmospheric pressure at which flow

will separate from the wall of a nozzle cannot be predicted accurately. Various rules of

thumb to predict separation have been suggested; however, general agreement on one of

these methods has pot been reached. An early rule stated that a danger of separation existed
when the ratio of exit pressure to ambient pressure was equal to 0.4. Later methods based

on fitting of experimental results accounted for the increase in overexpansion that can be

obtained with increasing Mach number. A fit of experimental data for short contoured

nozzles over a broad range of nozzle area ratios (ref. 24) indicates that separation will occur
when

Pwall/Pamb = 0.583 (Pamb/P)°"195

where

Pw_ai = exhaust-gas static pressure on the wall at separation

Pamb = ambient pressure

Pc = chamber pressure = exhaust-gas total pressure

17
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The method of reference 25 was the basis for a separation-prediction criterion that includes

the effects of gas properties and nozzle shape on separation. A recent and fairly complete
treatment of flow separation in nozzles is presented in reference 26. The results of the

various prediction methods have shown agreement with experimental data in many cases,
but in general predictions are used only as a guide.

2.1.2.1.4 Nozzle Extension

Two types of nozzle extensions are used on rocket nozzles. In the most widely used type,

the nozzle contour from the throat to the exit is designed for maximum performance. The

purpose of the extension is to provide a means of breaking the nozzle into two parts
between the throat and the exit. The break generally is made at the point where the method

of cooling tile wall is changed; for example, an active cooling method (regenerative) is used

in the high-heat-load region from the injector to the break, and a passive method (e.g.,
radiation) from the break to the exit. The extension also is used to (1) allow different

fabrication techniques for the combustion chamber and nozzle, (2) minimize weight, (3)

ease handling, and (4) reduce the total heat inPut to the active coolant.

The second type of extension is used to increase altitude performance of existing engines by

increasing the expansion area ratio without changing the existing engine nozzle. The

extension wall contour can be optimized to a specified end point for the basic flowfield at
the nozzle exit. The method is a routine application of the same technique used for

optimum bell-contour design. Tile flow properties across the exit of the basic nozzle are

used as a starting line for the calculation. For area ratios larger than 15, straight-wall

extensions produce nearly the same performance as optimized contoured extensions.

2.1.2.1.5 Small Nozzle

As rocket size decreases, viscous-flow effects become increasingly important, and the

techniques used to design and analyze conventional-size nozzles become less accurate. Thus,

low-thrust small-nozzle rockets developed for applications such as satellite attitude and orbit

control require special methods for nozzle design and analysis because of the relatively large
effects of viscosity on perforamnce.

Velocity slip and temperature jump at the wall as well as the effects of boundary-layer

curvature are included in the flow analysis of nozzles with a Reynolds number (Re) of less

than 500 (ref. 27). For low-Re nozzles, the throat boundary layer increases and therefore

the discharge coefficient decreases with increasing radius ratio as shown in figure 8. The

discharge coefficient C a in figure 8 is the ratio of actual mass flow in the nozzle to the mass
flow of the nozzle for one-dimensional inviscid flow; figure 3 shows the variation of

discharge coefficient C dpot with throat geometry for inviscid flow, i.e., Re = _. Reference

19



I°0--

0.8
(g

tD

8 o.6

g
L,.

U

N o.k

0.2

-t / // y- 1.667

J__L] I I I I I
60 80 I00 200 400 600 800 IO00

Reynolds number at throat

Figure 8. - Nozzle discharge coefficient as a function of Reynolds number at throat

for various values of Ru/R t.

28 contains information on tile flow coefficient (i.e., discharge coefficient) over a range of

throat Reynolds numbers between 650 and 350 000 (for which there is virtually no
information in tile literature). For throat Re values of less than 100, the method of

boundary-layer correction to an inviscid core breaks down; i.e., the boundary-layer
thickness at the throat exceeds the throat radius. Flow calculations are made by a method

that includes viscous effects in the generation of the flowfield (refs. 27, 29, and 30).

2.1.2.2 PLUG NOZZLE

A method for directly optimizing truncated aerospike or plug nozzles has not been

developed. The bell-nozzle optimization procedure can be applied to plug nozzles, but to
obtain a solution it is necessary to assume that the base pressure is zero. The results provide

an efficient expansion of the gas on the contoured wall, but low base pressure. Currently,

truncated ideal nozzles are used;these nozzles produce higher overall nozzle (base included)

efficiency than the optimum nozzles with zero base pressure.

The plug nozzle is designed by starting with the Mach line of an ideal exit flowfield (fig. 9)

and working upstream along a specific expansion surface. The Mach number of the exit flow

is constant, and the flow angle is parallel to the axis. The ideal nozzle then is truncated to

2O



, _ Internal expansion section (shroud)

_t_ Ideal exit flowfield

_ " _ /_Hach line

nozzleco.to,,r I _ _'-_

Figure 9. - Sketch illustrating nomenclature and configuration for ideal plug-nozzle design.

the desired length. The nozzle is designed without computing the transonic flow; the actual

flowfield computed from the transonic wall geometry differs from the design flowfield. This

difference may give rise to a predicted heat flux or pressure at some particular point
different from the design value, but this deviation is not significant in terms of overall
nozzle efficiency.

The flow angle at the throat relative to the axis in plug nozzles is equal to the Prandtl-Meyer

angle corresponding to the design exit Mach number. For a single-expansion plug with an

area ratio of 10, the angle is about 70 ° for typical rocket exhaust products. If internal
expansion (i.e., a shroud) is used, the throat flow angle is the difference between the

Prandtl-Meyer angles corresponding to the design exit Mach number of the plug nozzle and

the exit Math number for internal expansion. The combustion chamber, injector, and some

ducting must be placed between the engine maximum diameter and the usable expansion
exit area (fig. 9). For a fixed engine-envelope diameter, the usable expansion area ratio

therefore is less for the unshrouded design. Also, the structure required for the combustion

chamber is heavier than that needed when the throat flow is more nearly parallel to the axis.

Shrouded plug. - A shroud is a short outer wall (fig. 9). The shrouded nozzle design starts

with the same ideal exit flowfield as that for an unshrouded nozzle, and therefore the

performances of the two configurations are similar (the main difference is due to slightly
different boundary-layer development and nonequilibrium effects), but the shrouded nozzle

is longer. The shrouded nozzle provides a larger usable exit area for a given engine diameter.

At very high thrust levels, the combustion-chamber length becomes small compared to the

nozzle length, and the unshrouded plug nozzle provides a better overall package than does
the shrouded configuration.
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The procedurefor designof annular-nozzlecontours for high-energypropellantsis
fundamentallythe sameas the procedurefor the bell: the shapeof the short wall
immediatelydownstreamof the throat is selectedto providea relativelyslow initial
expansion;thentheremainderof thenozzleisdesignedwith theequilibriummethod.

2.1.2.2.1 Base Design

The line of truncation for a plug nozzle forms a region referred to as the base. Recirculating

gases from the main flow produce a pressure on the base. This base pressure over the area of
the base is additive to the nozzle thrust. Additional thrust from the base can be generated

by the addition of turbine exhaust or coolant gases.

Unless shielded by relatively cool bleed gases, the base region is subjected to recirculating

gases with stagnation temperatures nearly equal to the combustion-chamber total

temperature. In an engine with a gas-generator turbine drive (ref. 3 1), turbine exhaust gases
are dumped into the nozzle base; for a prebumer or expander cycle, no secondary flow is

used, and the base must be cooled. The base pressure obtained for a given nozzle geometry

and secondary flowrate, if used, depends on the base design and particularly on the method
of introducing the secondary flow. The highest performance is obtained when the secondary
flow is introduced with minimum axial momentum. Current designs inject the secondary

flow through a porous plate covering the base (fig. 10(a)). The base plate is made concave to

obtain the required rigidity from a structure considerably lighter than a flat base plate.

Equal performance can be obtained with a deep-cavity base (fig. 10(b)) wherein secondary
flow is introduced normal to the axis. The porous-plate configuration is favored, since it
allows the volume that would otherwise be taken up by the deep cavity to be used for

turbomachinery and other engine components.

ct

v,
Secondary

(a) Porous-plate base

Secon_

(b) Deep-cavity base

Figure 10. -Two types of base design for a plug nozzle.
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Most predictions of base pressure are made by a method that is based on scaling the results
from a cold-flow model (ref. 32). The method is limited to truncated ideal plug nozzles

because of the lack of test data for other configurations. Theoretical solutions for the base

pressure require an analysis of the nozzle flowfield to obtain the boundary-layer solution

and the potential flowfield at the nozzle exit. When little or no base bleed is introduced, the

base region is analyzed by methods outlined in reference 33. The method described in
reference 34 has been modified and used for designs with large base-bleed rates.

2.1.2.2.20verexpanded Nozzle

The flow phenomena that occurs during overexpansion of a plug nozzle are illustrated in
figure 11. Figure I l(a) shows the flowfield of a plug nozzle expanding at the design pressure

ratio (exit pressure for one-dimensional flow equals ambient pressure for the assumed gas

properties). In this case, the exhaust gas separates from the outer wall when the velocity

vector is parallel to the axis. For truncated ideal nozzles, the first wave that signals

separation from the outer wall, e-f, passes far downstream of the plug base, and performance
is unaffected. When the pressure ratio is decreased to about 1/3 of the design value (fig.

1 l(b)), the first wave from the outer jet boundary runs downstream of the contour and

intersects the base jet boundary near the base, influencing thrust by raising the base

pressure. At some lower pressure ratio, the first wave from the outer jet boundary intersects

the nozzle, raising the wall pressure. When the nozzle operates in the slipstream of a moving

vehicle, the outer jet boundary shape depends on the base pressure at the cowl, as shown in

figure 1 l(c). The solution for the problem of interaction of slipstream and main flow is

within present technology but has not been incorporated in available programs. For

truncated ideal nozzles, recompression (reflection of exhaust gas from ambient jet
boundary) is isentropic, i.e., no shocks occur; in nonideal nozzles, waves reflected from the

jet boundary coalesce to form a shock that intersects the wall. The pressure peaks associated

with recompression cause local areas of high heat flux, which move along the wall with

changing pressure ratio and which must be considered in the design of the cooling system
and structure of the nozzle.

2.1.3 Nozzle Contour Tolerances

Theoretical analyses and model test programs (ref. 23) have shown that bell-nozzle
performance is not sensitive to small deviations from the nominal wall shape. The nozzle

contour tolerances ensure that the completed nozzle will approximate the selected nozzle

shape sufficiently to obtain desired nozzle efficiency, thrust level, and thrust vector

alignment. For the large-scale tube-wall nozzle of the J-2 engine, the tolerance on the
14.7-in. throat diameter is -+0.030 in. Allowable contour deviation on the circumference is

0.025 in./in. These tolerances are small in order to reduce geometric asymmetry that was

suspected of contributing to side loads and to provide the required thrust alignment. The
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thrust-vector alignment tolerances for the J-2 engine are -+0.55 in. displacement at the
gimbal center and -+0° 43' angle from the thrust chamber centerline. The F-I engine has no
tolerance values on the assembled nozzle per se; nozzle shape is controlled by tolerances on

individual tubes, bands, jackets, and end ring. The F-1 actual thrust vector must fall within

0.60 in. of the gimbal center and be within 0 ° 30' of the engine centerline.

Closer tolerances on throat diameter must be used on an annular nozzle to achieve the same

deviation of throat area allowable for a similar bell nozzle. For example, a plug nozzle with

an area ratio of 80 and the same thrust and chamber pressure as the J-2 has a throat gap of a
little over 0.45 in. The J-2 throat tolerance (-+0.03 in.) would allow nearly 15-percent

deviation from the nominal area in this case. The change in throat area from deflection of

the walls due to pressure loads and thermal expansion is significant. Unless the inner and

outer walls are both very nearly circular and the center lines coincide, the thrust vector may

be displaced beyond the allowed deviation. Reliable rules for contour tolerances have not
been established for annular nozzles.

2.2 NOZZLE STRUCTURE

The nozzle of a liquid rocket engine extends downstream from the convergent section of the

combustion chamber to the exhaust-gas exit plane. The physical structure of a nozzle

depends largely on the method used to cool the combustion chamber and the nozzle. As

noted earlier and as shown in tables I and II, various combinations of cooling methods have
been used. The treatment of nozzle structure herein emphasizes a regeneratively cooled

chamber and basic nozzle combined with a regeratively cooled, film-cooled, ablation-cooled,
or radiation-cooled nozzle extension. Discussion of the structure of ablation-cooled and

radiation-cooled nozzles and nozzle extensions is limited because these subjects are treated
in detail in references 1 and 2.

The nozzle structure transmits the pressure thrust to the combustion chamber and injector

assembly, which in turn transmits the total engine thrust, usually through a gimbal block, to
the vehicle frame. Nozzles are designed to minimize weight and, to some extent, cost, but

not at the expense "of performance. As a result of the emphasis on performance, the nozzle

is the largest single component in most rocket engines and as such is a natural backbone for

the engine structure. It is also a convenient place to mount other components such as

coolant manifolds, hot-gas ducting, turbomachinery, and auxiliary equipment.

Figure 12 shows the thrust chamber and nozzle of the 200 000 lbf-thrust, pump-fed,

regeneratively cooled J-2 engine. This thrust chamber assembly illustrates a typical
placement of major components for a large engine. The basic combustion chamber and

nozzle are made up of a bundle of tubes formed to the desired shape and externally

supported by a continuous shell in the combustion chamber and throat region and by

retaining bands over the balance of the nozzle. The fuel and turbine exhaust manifolds
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attachto the nozzleand form an integralpart of the structure.Mounts for the pumps,
gimbal actuators,and other componentsare placedon major structuralmembersto
distributethe loadovertherelativelyfragiletubebundle.

Mechanicaldesignof the nozzleiscomplicatedby theseverethermalenvironmentandlarge
dynamicloadsthat mustbe-wil/hstoodby thenozzle.For exam_I_,duringthe:initialboost
phase,the nozzlesof the coreengineof theTitan III first stagearesubjectedtoa severe
thermalenvironmentgeneratedby thesolidrocketmotorstrapons.To preventdamage,the
externalsurfacesof the structureareprotectedby an insulationblanketwhile the nozzle
innersurfacesareprotectedby astageableexit-closureheatshield.

Nozzlestructural failuresoften are due to inaccuratepredictionsof the gas expansion

produced by the nozzle. A typical failure of this kind is the collapse of the nozzle fi-om

overexpansion during ground testing or from high side loads generated by Severe
accelerations of the exhaust gas resulting from unsteady, asymmetric separation of the
expanding gases from the nozzle wail.

2.2.1 Regeneratively Cooled Nozzles and Extensions

In a regeneratively cooled thrust chamber, one of the propellants (usually the fuel) is used as

a coolant for the chamber wall. As noted, the thrust chamber is made up of a bundle of

thin-wall tubes or, more recently, a cylinder with coolant passages formed in the wall (ref.
35); the construction of the latter type of thrust chamber is illustrated in figure 131 The

propellant is pumped at high velocities through the coolant tubes (or passages), separated
from the combustion gases by a relativley thin wall. This cooling method can handle very

high heat fluxes and provides a relatively lightweight thrust chamber. The energy transferred

through tile wall increases the energy of the propellants at the injector. All of the existing

pump-fed engines are at least partially regeneratively cooled. Regenerative cooling is seldom

used for pressure-fed engines because of the increased propellant tank pressure required for

the coolant-jacket pressure drop. Reference 36 provides detailed treatment of the design of

regeneratively cooled thrust chambers and also presents information on the assembly of

tube-wall structures by brazing; much of the material therein is applicable to nozzle design
and assembly.

2.2.1.1 INTERMITTENT RETAINING BANDS

Nozzle tube bundles have little resistance to external loads arising from side loads during

startup, flow separation, or mechanical forces from attachments: therefore, either a

continuous shell or intermittent rigid retaining bands are required for support of the tubes

(fig. 14). Continuous support of the chamber shell (fig. 14(a)) commonly is stopped
downstream of the chamber throat; intermittent retaining bands are then used down to the
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nozzle exit on tube-wall rocket nozzles, as shown in figure 14(b). Such bands are feasible

because of the rapid decrease of wall pressure aft of the throat; the bands are shaped and

sized to withstand the various internal and external loads. This use of bands results in weight

saving, cost reduction, and reduced nozzle fabrication problems. The weight reduction on

the aft end of the nozzle is particularly advantageous in reducing moments on gimbaled

engines. The major fabrication advantage of bands over the continuous shell is that the braze
tolerance control is easier. In addition, less braze alloy is required.

Retaining bands can be made from fiberglass wrapping or wire windings, but normally are

solid metal straps formed to fit around the nozzle over the tubes. The bands are designed to

control tube-to-band fits so that each tube, after brazing, is supported by each band in the

radial direction. Bands are sized structurally to withstand all internal-pressure hoop loads
and external loads such as those caused by gas-flow separation, side loads, and accessory

attachments. The tube-to-band braze joint ties the tube bundle to the retaining band so that

the nozzle reacts to loads as a unit instead of as a group of individual components. The
braze joint must also withstand the axial 10ad caused by nozzle pressure being restrained in a

diverging section.

Required retainer band spacing is determined by analyzing the unsupported tube length that

can be allowed at operating (pressurized) conditions. Retainer band width depends primarily

on band dimensions necessary to withstand the required operational loads. External

mechanical and differential pressure loading have caused band buckling. In an early J-2

engine, side loads on the nozzle at startup caused localized buckling of an aft band early in

intended chamber life. The fix described earlier (sec. 2.1.2.1.3) was adequate structurally

but was expensive and heavy. For the nozzle on the J-2S (an improved version of the

J-2 engine), the band was redesigned to be lightweight and easy to make and yet have good
buckling resistance.

Problems and difficulties that accompany the use of retaining bands are illustrated in figure

15. Uniform tube-to-band tolerances are necessary for minimum gaps for braze joints.

High-low tube conditions have produced excessive braze joint gaps (fig. 15(a)), which result

in inadequate bonding of some tubes and in overstressing and failure of the bonded tubes

where the bands rest on the high tubes. The same high-low tube conditions have resulted in
high-tube crown depressions (fig. 15(b)) when the bands were forced to fit the low-tube

dimensions in order to ensure proper braze gap. A variable contact angle or improper
contact angle between the band and the tube (fig. 15(c)) has resulted in nonuniform

tube-to-band gaps circumferentially around the nozzle with subsequent poor braze joints or

dented tubes. Nondistributed external loads (fig. 15(d)) and band loading due to improper

hardware fits or differential weld shrinkage (fig. 15(e)) have also caused tube damage. Local
tube discontinuities such as joints and fairly abrupt changes in tube shape adjacent to or

under bands can result in stress concentrations and early tube failure. Tube-to-band gaps
resulting from poor fitup have been compensated for by inserting shim stock between the

band and the tubes (fig. 15(0).
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The critical structural area in tube-to-band joints norn_ally is that area where the braze

attaches the tube to the band at the band edge. These intersections result in local strain

discontinuities at the tube contact points. On the nozzle for the F-1 engine, which had

rectangular retaining bands, tubes were instrumented and tested at the tube-to-band
intersections. Concentration factors for axial stress up to 2.2 were measured; this value

probably is low, because attaching instrumentation in sharp corners is very difficult.

Analysis of these joints showed axial-stress concentrations as high as 2.8 and bending-stress
concentrations as high as 2.45. No design changes were required on the F-I nozzle, aIthough

tube failures occasionally have occurred at the tube-to-band joint after many tests. Reducing

the band thickness at the edge of the band reduced the stress concentrations.

Vibration characteristics of the nozzle structure and attaching components play a critical

role in hardware durability, but these characteristics are very difficult to predict. Structural

vibration coupled with tube-to-band stress concentrations has caused many hardware
failures. Vibrational stresses added to tube pressure and thermal loads have resulted in joint

cracks at the retainer band-to-tube intersection. Analytical techniques described in

references 34 and 37 have been used to predict chamber natural frequencies and dynamic

loads resulting from anticipated vibration environments. Actual stress levels have been
determined best at nominal hot-firing conditions with strain gages mounted at suspected

high-stress tube-to-band joint intersections, and the results used to predict fatigue life.

Retaining-band material must be braze-compatible with the tube material either in the

original or plated condition. A controlled cooldown cycle after furnace brazing has been

used successfully to produce required mechanicaI properties with ageable band materials
such as Inconel 718 and Inconel X-750. Coupons included in the furnace during the braze

cycle are evaluated to verify mechank:all_ropert_!es of band material after the braze cycle.:-

2.2.1.2 TUBE SPLICE JOINTS

The circumference of a nozzle, a minimum at the throat, increases somewhat in the

combustion chamber and greatly in the nozzle expansion section, especially for nozzles with

high expansion-area ratios. For tube-wall nozzles, the amount of variation in circumference
that can be obtained with a fixed number of tubes is limited by how much the tubes can be

worked by tapering (varying the tube cross section) and forming. When the point at which
the circumference cannot be further increased with the fixed number of tubes is reached, it

is common practice to increase the number of tubes by using a tube "splice", in which for
each tube coming into the splice two (or more) tubes leave the splice (fig. 16). The splice

joint (also called a bifurcation joint or tube joint) occurs commonly in the nozzle and

infrequently in the chamber. The joint location is determined from a tradeoff of heat

transfer, weight, pressure drop, and fabricability.
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Figure 16. - Two types of coolant-tube splice joints.

At moderate expansion ratios (_8:1), nickel and stainless steel tubing can be tapered or
otherwise formed successfully (Thor, Titan, and Atlas boosters). With the InconeI X-750

tubes of the F-1 engine, however, tapering became much more difficult and, in addition for

the F-l, a bifurcated-tube design was lighter than a single tube to the I0:1 expansion ratio.

The F-1 nozzle, therefore, has a splice joint at the 3:1 expansion ratio. (In an early F-I

design in which the nozzle was to be completely regeneratively cooled to the 16:1 point,

two splice joints were planned.)

For very large expansion ratios, some method for increasing the number of tubes in the

nozzle aft end is required. Even with stainless steel or nickel tubing, smaller tubes are used
in order to reduce weight, increase cooling velocity, or make the tube fabricable. The Atlas

sustainer (expansion ratio of 25) has a splice joint at about 7:1. In the J-2 and J-2S
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(expansion ratios of 27-1/2 and 40, resp.) and the RL10, pass-and-a-half construction

increases the number of tubes, and these nozzles do not require a splice joint. In all of the

new Titan first- and second-stage engine systems, the tube bifurcation joint and its problems

have been eliminated by employment of ablative extensions exclusively.

Rectangular splice joints (fig. 16(a)) have been used successfully for secondary tube widths

of 0.5 in. or less (Atlas sustainer). In the F-1 engine, which has large tubes with relatively

thin walls operating at high internal pressure, rounded tube crowns are necessary, and the
"D" splice (fig. 16(b)) was developed. For this tube joint, the ends of the primary tube and

the two secondary tubes are shaped as shown, and the secondary tubes are fusion welded

together on the tube ends. Wire braze is preplaced in the primary tube and braze foil is
inserted between the secondary tubes, and the assembly is induction brazed. The entire tube

assembly is then used in stacking the chamber. The tube joint for the Atlas sustainer is made

in a similar but simplified manner.

A sharp transition (joggle) in a secondary tube at the splice joint leads to stress
concentrations. On the hot-gas side of the joint, thermal loads at these stress concentration

points produce low-cycle plastic strains. With a material of good ductility and a limited

number of cycles, as in the stainless steel tubes in the Atlas sustainer, leaks have not
occurred. With the lower ductility Inconel X-750 of the F-1 nozzle, however, cracks in the

secondary tubes developed. Although these cracks originally were thought to be, and had

the appearance of, braze-joint cracks, investigation showed that the secondary tubes were

cracking (fig. 17). Engines with a large number of restarts may suffer low-cycle fatigue of

tube joints even with relatively ductile materials if the joint has a joggle in a hot-gas wall.

Hot-gas flow

_- Prln_ry tube [-Secondary

J__nt

tube

al tube crack

ete tube crack

Figure17. - Types of cracksin brazed jointsof coolanttubes(F-1 engine).
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2.2.2 Film-Cooled Extensions

The nozzle extension for the F-I engine is the only example of a film (gas)-cooled ex tension

in production. The F-I engine is of more than ordinary importance because it is the
highest-thrust single-chamber liquid rocket engine that has been operational to date. The

design of the F-1 nozzle extension and the method of cooling it are unique and are therefore
described in some detail in this section.

The regeneratively cooled section of the F-1 nozzle extends to a 10:1 expansion ratio, and the

extension to 16:1. The extension is cooled by turbine exhaust gases. This method of

exhaust-gas disposal is not only an effective method of cooling the extension but also

reduces the overheating and afterburning problems that arise when turbine exhaust gases are

discharged overboard through conventional ducts in nozzles. Turbine exhaust gases are

injected along the extension wall at the joint attachment and also from shingles along the
length of the extension (fig. 18). The extension consists of an outer skin connected by "Z"

stringers to the inner shingles(fig. 19), all of Hastelloy C. The shingles overlap and form slots

through which the turbine exhaust gas flows and protects the shingles from hot combustion

gases. Retaining bands are attached to the outer skin, and the entire extension is bolted to

the turbine exhaust manifold, which is an integral part of the regeneratively cooled nozzle
section.

2.2.2.1 SLOTS

The slot design for the F-1 nozzle extension (fig. 18), which was based on references 38 and

39, was intended to maximize the effectiveness of the film-coolant flow. Since the F-lslot

design was developed, the effect of gas-stream separation has been quantitatively evaluated

(ref. 40). The effect of slot height and slot turbulence intensity on the effectiveness of the
film cooling is covered in reference 41. Reference 42 discusses the importance of lip

thickness and injection angle. Reference 43 deals with large discontinuities and has also been

used extensively for calculation of film-cooling effectiveness. References 44 and 45 indicate

that, for injection of turbine exhaust gas into a supersonic nozzle area, the minimum

amount of stream mixing and thus the most effective use of the film coolant occurs when
the gaseous film coolant is injected parallel to the main gas stream, at the highest possible

velocity, and with the smallest separation of the gas streams.

Permanent distortion of the shingles of nozzle extensions due to plastic flow caused by

thermally induced stresses changes the slot geometry and produces unequal coolant

distribution to the hot-gas wall. Total distortion is related to the number of thermal cycles

rather than to the total firing time. Rigid shingle designs (fig. 20(a)) are subject to thermal

distortion and have resulted in local liner failure. A design that limits deflection in both the

up and down direction but allows axial and circumferential thermal growth has been used
successfully in R&D hardware. The present F-I nozzle uses a dimpled sheet design (fig.
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Figure 19. - Provisions for coolant crossflow in F-1 nozzle extension.
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Figure 20. - Two designs for controlling distortion of coolant slot in film-cooled extension.

20(b)) that prevents the slot from closing but not from opening too wide and starving other

slots. Ductile metals such as Inconel 625, Hastelloy C, or 347 CRES have been required as
shingle and structural materials in order to avoid low-cycle thermal fatigue.

2.2.2.2 ATTACHMENT-AREA GEOMETRY

The geometry of the attachment area of the F-1 nozzle extension (fig. 18) is controlled by

the regeneratively cooled exit end of the main chamber and the film-cooled upstream end of
the nozzle extension. The large separation distance between the main-gas stream and the

coolant-gas stream along with the nonparallel coolant-gas injection caused the main hot-gas
flow to detach from the wall and then reattach at a point downstream. At this reattachment

point, the protecting film-coolant layer was destroyed, and the shingles overheated, warped,

and burned out. This problem of local reattachment and overheating was overcome by

introducing a large proportion of the total film-cooling gas flow in the attachment region,
but overheating occurred in the remainder of the nozzle extension because the coolant flow

there was reduced. The actual proportion of the total coolant-gas flow (about 25 to 30%)
that was required to prevent local overheating downstream of the attachment point while

still leaving enough coolant to cool the remainder of the nozzle adequately had to be

experimentally determined with full-scale hot-firing hardware. No analytical technique
available at the time would adequately predict the results.

The cooling of the shingles just downstream of the attachment area is controlled by the

same parameters that control the film cooling of the remainder of the extension (sec.

2.2.2.1). Injection of the film coolant parallel to the wall and with small gas-stream
separation is more difficult in the attachment area.
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2.2.2.3 EXTENSION STRUCTURE

An extension cooled by turbine exhaust gas is cooled with a fluid_nomlally cons_i.dered a hot
gas; thus operating temperature, thermal stress, and thermal distortion are very important
aspects of the design problem. Figure 19 shows the Z sections used to attach the outer skin

to the inner skin for the F-I nozzle extension. Circumferential maldistribution of the

turbine gases caused local coolant starvation and produced warping of the shingles. Holes in

the Z members as shown improved the distribution and eliminated the problem, Good

structural and ductility characteristics at operating temperature are requirements for

gas-cooled nozzle extensions. Inconel 625, HastelIoy C, and 347 CRES have satisfactory

ductility, but the 347 CRES has considerably lower strength. _Bands have been made from
347 CRES. In the highly loaded aft end, the band usually is made from Inconel 718. "

Fusion welding of the Z members to the shingles resulted in protrusions on the hot-gas side

of the shingle, boundary-layer interruption, and subsequent erosion and failure of the

shingle. The use of spot welds and seam welds that were ground nearly flush with the parent

metal eliminated this problem. The quality of resistance welds is quite difficult to control,

however, and strict adherence to the requirements of reference 46 was necessary to ensure
adequate quality.

During the start and stop transients on the F-l, large side loads result from asymmetric flow

separation. Since the side loads move around the nozzle perimeter, the nozzle extension

tends to "breathe'_ and the result is hardware failure. The calculation of these side loads is

not very precise, and overdesign of the retaining bands has been necessary to ensure that the
bands will not yield.

In order to minimize the weight of the bands, the heat transfer from the extension to the

bands is reduced so that the band operational temperature is lower; this reduction is

achieved by inserting insulation under the bands and under the aft band. In addition, the
bands are scalloped along the weld joint between tile band and the shell Outer wall to reduce

conduction to the bands. These insulating techniques, shown in figure 21, have increased the

local thermal yielding of the outer shell, but the additiona! yielding has not been a serious

problem. Contamination of the insulation with fuel is minimizedby altering opera'tional
procedures. The band scallops also help drain the insulation.

Gross inner and outer wall buckling due to thermal and mechanical loads is reduced by close
spacing of the nozzle bands. Figure 22 shows the effect of band spacing on the contotlr of
the nozzle extension and on gas flow after several firings.

2.2.3 Ablation-Cooled Extensions
-,,...

Ablation-cooled extensions offer advantages that make them attractive in some rocket

applications. Because they are self-cooled, they are easily detached for ground testing of
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altitude engines, so that nozzle-extension hardware is preserved and side loads from flow

separation are precluded. Ablative nozzle extensions generally are lower in weight than
film-cooled extensions and can operate continuously at a higher heat flux than can

radiation-cooled nozzles. In addition, they are usually less expensive than film-cooled or
regeneratively cooled extensions.

The composition, fabrication, and performance of ablative composites are discussed in

references 1 and 2. As may be seen from the references, the support structure and

performance characteristics of combustion chambers are different from those of the nozzle

system. Erosion (sometimes chunking) or true ablation occurs in tile chamber, where heat

fluxes are high. In the nozzle, generally only charring occurs because the heat fluxes in this

area are low enough to keep the wall surfaces intact. Attachment of the ablative extension

to the nozzle requires special attention. Flange flexing or overall flexing due to handling,

thermal distortion, or side loads from separated flow may cause bond failures and

subsequent extension failure. In the successful attachment design for the Titan engines (fig.
23), the ablative extension is attached to the regenerative portion of the nozzle by a simple

flange arrangement. No particular precautions or special sealing procedures are required. The

Outer glass wrap

Honeycomb structure

Inner glass wrap

Submerged
mounting

Ablative liner

Resin filler

Figure 23. - Construction of ablative nozzleextension for Titan engines.
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flange interface is horizontal and flat with a step machined into the liner at tile hot gas side,

A protruding lip from the chamber flange fits into the step to provide a simple method of

positioning the extension squarely on the chamber. A leakproof seal is achieved by painting

the flat surface of the flange with a silicone RTV sealant compound. The flange joint is
fastened securely by bolts. In order to bolt into the ablative extension, 24 aluminum flange

segments are bonded below the ablative flange surface; these segments are then drilled and

tapped for thread inserts,

It should be noted in connection with the Titan nozzle extension that designs in which the

aluminum segments were omitted (for simplicity) and the inserts installed directly into the

ablative liner failed during the start transient. The failures occurred because the available
inserts were intended for use with metal and lacked sufficient length to prevent shearing at

the threaded interface. In addition, when inserts were installed directly into the ablative

composite, the inherent creep characteristics of the material made it difficult to meet torque

requirements.

Ablative material has limited mechanical strength and is sometimes backed by a honeycomb

structure that is internally and externally wrapped with a glass/plastic composite. For

example, in the Titan extensions, the tapewound ablative liners are strong enough to

accommodate hoop loads from the internal nozzle wall pressures, which on the Titan

systems range from 28 psi to 13 psi at the exit for the 15:1 nozzle. However, a
glass-cloth/honeycomb-sandwich structure that constitutes 20 percent of the nozzle weight

is employed to provide additional support for the liner during the start transient and

gimbaling operation.

Gas evolution at the interface of the supporting structure can lead te pressure buildup

sufficient to cause structural failure. To avoid this problem, all honeycomb channels are

interconnected through drilled passages to allow free passage of gases to the atmosphere. In

some designs of high-area-ratio ablative nozzles, the required strength is supplied by a

thickened outer glass wrap.

2.2.4 Radiation-Cooled Extensions

Radiation-cooled nozzle extensions normally are used on pressure-fed space-engine systems,

where high expansion ratios and minimum nozzle weight can be achieved at the lower

operating pressure and thermal environment. The expansion ratio at the start of the
extension is determined by the maximum heat flux that the extension can withstand at

altitude. Variables affecting allowable thermal conditions, other than physical capabilities of

the base material, include injector streaking characteristics, boundary-layer conditions,

protective coatings on the extension, and external-shell emissivity. A generous fuel-rich

boundary layer helps reduce heat flux but, of course, is detrimental to performance.

Streaking injectors require that the extension be designed to the most extreme load
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conditions,sincecircumferentialheattransferisquite low.A smoothtransitionbetweenthe

nozzle and the extension minimizes heat loads from the gas boundary-layer attachment.

For low-temperature operation, titanium alloy AMS* 4917 has been satisfactory. For higher

temperatures, hoop loads on titanium extensions have been taken up with molybdenum

retaining bands fastened to the shell with a spot welder. For temperatures below 2000°F,

both the cobalt-base L-605 (AMS 5537A) and the stainless steel N-155 (AMS 5532B)have

been used successfuIly without protective coatings. At temperatures above 2000°F,

refractory metals normally must be used for extensions. At these high operating

temperatures, the most promising refractory alloys catastrophically oxidize or absorb

gaseous products and become brittle. For columbium C-103, the aluminide coating NAA-85
has proved effective as an oxidation barrier. When a titanium extension was resistance

welded to a columbium extension, the NAA-85 coating had to be left on the columbium to

obtain a sound weld. Development problems in the use of refractory metals have been much

greater than those that occur with "standard" metals that are limited to lower operating

temperatures. The coating developed for a columbium chaJnber and nozzle extension in a
technology development program is discussed in reference 47.

Flange yielding or nonuniform support on the extension increases the stresses in the joint

and has led to cracking and leaking. Nonyielding flange designs and closely spaced

high-temperature clamping bolts (e.g., those made of Rene 41) have minimized the

difficulties, which are particularly severe for refractory extensions because of the higher
temperatures. The use of a long heat-conduction path to tile seal areas has allowed the use

of elastomeric seals in some flange joints; elastomeric seals have considerably reduced the

sealing problem, especially for large diameter seals. Asbestos seals have been used in initial

development hardware with heavy flanges and relatively-short-duration testing in which the
seal area has not become too hot. Pressure-assisted seals (e.g., Naflex and K seals) have been

used successfully in flight hardware. Reference 48 provides detailed information on the

design of joints and seals.

The high-temperature emissivity of metal surfaces can be increased by oxidizing and
roughening the surface. The emissivity of aluminum can be increased from 0.1 for a clean

surface to 0.9 for a dark anodized surface. Wall temperatures have been reduced by as much

as 100°F by the use of an external emissivity coating.

Sea-level testirig may induce severe structural loads from flow separation and also results in

steady-state temperatures in the extension that are not the same as those achieved in space;
thus, little if any sea-level testing is done with the nozzle extension in place.

*Aerospace Material Specification.
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2.2.5 Circumferential Manifolds

Circumferential manifolds for liquid rocket engine nozzles are used primarily for the

following purposes:

• Direct fuel-rich turbine exhaust gas into the main gas jet

• Distribute turbine exhaust gases for gas-cooled nozzle extensions

• Distribute regenerative coolant around the nozzle for feeding the cooling tubes

• Direct the flow from the downcomer tubes to the upcomer tubes at the nozzle
exit.

2.2.5.1 MANIFOLD HYDRAULICS

Weight limitations usually result in minimum manifold volumes and high fluid velocities.
Holdup volumes affectin_ _start and shutdown transients and wet weight are further

considerations limiting the volume. Liquid velocities of 50 to 100 fps and gas velocities of
Mach 0.25 to Mach 0.4 have resulted in maldistribution of the fluids, the consequence being

tube starvation and inadequate local film coolant. With high fluid velocity in a radial inlet to

a distribution manifold (fig. 24(a)), local static pressures will vary as shown in figure 24(b),

and flow through the bleedoff ports will vary significantly along the manifold. Variations in

static pressure near the inlet have been reduced by lowering the inlet velocity and also by

providing multiple tangential inlets (fig. 24(c)), multiple low-velocity radial inlets (fig.

24(d)), or single or multiple radial inlets with turning vanes or deflector plates (figs. 24(e)
and (f)). Variations in static pressure along the manifold in constant-area manifolds have

been reduced by tapering the manifold (fig. 25).

Basic hydrodynamic information is available in reference 49, and reference 50 contains

information o_ hydrodynamic losses in branching manifolds. Local static-pressure profiles
just downstream of the inlet duct normally cannot be calculated accurately, however, and

experimental measurements must be made in critical areas. Since the flowrate through the

bleedoff ports is affected by the cross velocity in the manifold as well as by the static

pressure in the manifold, actual measurements of flow in bleedoff ports are often necessary.

Even with a reasonably uniform pressure distribution near the inlet (produced by relatively

low inlet velocity and a turning vane) with a tapered manifold, a pressure increase will occur

at the final stagnation point in the manifold (fig. 26). Excess flow through the bleedoff

ports near the final stagnation point can be reduced by increasing the flow resistance in or
downstream of the bleedoff ports.
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Figure 24. - Types of manifold inlet configurations.
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(a) Tapered manifold
with radial Inlet

(b) Tapered manlfold with
tangential Inlet

Figure 25. - Two configurations for tapering a manifold to reduce variation of static pressure,
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Figure 26. - Manifold configuration for minimum variation in static pressure.

44



2.2.5.2 VANES, SPLITTERS, DAMS, AND STRUCTURAL SUPPORTS

Maldistribution in flow often results from the high velocities associated with

small-cross-section manifolds used to keep structural weight low and from the low

pressure-drop requirements normally imposed on rocket engine flow system components.
Vanes, splitters, and dams help correct these flow maldistributions. Large manifolds

normally have relatively thin walls in order to minimize weight and are more flexible than

the supporting structure. To prevent failure of these large manifolds, structural ties

(supports) frequently are added. The hydrodynamic function of vanes and splitters

sometimes is combined with the structural function of ties, and one member is used to do
both jobs.

2.2.5.2.1 Turning Vanes

Although hydrodynamic correlations available in the literature (e.g., ref. 49) can be used to

predict the pressure distribution in a manifold, the results frequently are not sufficiently

accurate for design purposes. For very large, expensive manifolds with fabrication lead times

of many months, it is impractical to recontour or move the turning vane on the basis of

experimentally determined pressure profiles. For the inlet to the F-1 turbine exhaust gas

manifold that was used to distribute gas film coolant around the chamber, the turning-vane
contour design was based on available theory. Removable plugs were inserted in the

auxiliary turning vanes (fig. 27), and pressure contours were determined with various

combinations of plugs removed, without the necessity of physically moving the turning
vanes.

Vertical structural tle_

j_--Inlet

._._.._...--_----Horlzontal structural tie

_lr _ _Prlmary turning vane

Outlet -.d

Figure 27. - Manifold design with removable plugs in auxiliary turning vanes.
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2.2.5.2.2 Flow Splitters

Splitters have been used to provide an equal flow split for a nonsymmetrical entrance
configuration (fig. 28); however, splitters located in the geometric center of the flow

occasionally have caused increased maldistribution. The effectiveness of the splitter is

sensitive to upstream flow conditions. If the upstream conditions change during operations
(as from a variable-position valve), the flow split under some of these conditions may be

considerably worse than it would have been without a flow splitter. Experimental

determination of the pressure profile when upstream conditions are varied has been

necessary to establish the effectiveness of flow splitters across the entire operating range.

Splitters can be avoided with symmetrical entrance configurations such as those in figures
29(a) and (b). With nonsymmetrical configurations (fig. 29(c)), splitters may be avoided

only if the entrance velocity and upstream velocities are kept low.

Figure28. - Manifold flow splitterfor nonsymmetricalentrance.

(=) Synmetrlcal elbow (b) Sym_etrlcal tee (c) Nonsymmetrlcel entrance

Figure29. - Symmetricalandnonsymmetricalmanifoldentrances.
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2.2.5.2.3 Dams

Dams are used to decouple fluid pressure pei'turbations and to help "fix" the pressure
profile. In the fuel-return manifold at the end of the thrust chamber nozzle off the H-I

engine, a nonuniform inlet flow resulted in a variable cross velocity and variable distribution

to the injector, and performance changed during test. A dam that covered 80 percent of the

cross-sectional area of the fuel-return manifold and was located opposite the (upstream) fuel

inlet for the main tube bundle considerably reduced the variations in cross velocity and
stagnation-point location and eliminated the performance changes.

2.2.5.2.4 Structural Supports

Vanes, splitters, dams, and structural ties are subject to failure from differential thermal

stress; fatigue from vibrational loads; fatigue from resonant flutter; and excessive
static-pressure loading. Even when the failure does not result in a direct structural failure of

the nozzle, it often produces a maldistribution Of fluid flow and results in performance loss,
combustion instability, or wall overheating. Toroidal manifold shells often are more flexible

than the supporting structure and will "breathe" under pressure variation. Flow distributors

and structural ties must be sufficiently flexible to grow with the shell and sufficiently rigid

to support the shell locally, or they must be mounted on one side of the supporting

structure with clearance left on the remainder of the circumference. Attachment of vanes,

splitters, dams, and structural ties (figs. 30, 31, and 32) is extremely critical, since fatigue
failure at the attachment location is a common failure mode.

Figure 30 shows some methods for attachment of turning vanes and splitters. The fillet weld
is a generally unacceptable joint, while the full-penetration fillet weld is much better and

usually acceptable. The butt weld is a good joint, and the integral casting has been excellent
where it could be used.

Figure 3 1 shows two modifications of turning vanes that will prevent vane flutter in a large
manifold. Flat surfaces are extremely subject to flutter, and large curved sections also have

failed from fatigue. A splitter used in conjunction with vanes can produce a
vibration-resistant structure.

Figure 32 shows several methods for welding dams in manifolds. Partial Welds are the

simplest but the most subject to fatigue failure. Continuous internal welds and

internal-external welds are very good structurally but are limited to use adjacent to a

manifold, because of the weld access requirements. Integral dams that are part of the parent
metal constitute the best design from a structural standpoint and have in general been
failure free.
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(a) Fillet weld

(c) Butt weld

(b) Full-penetrat]on fll)et weld

(d) Integral castiag

Figure 30. - Methods for attaching turning vanes and flow splitters to manifold.

Turning vane only Splitter added Dampeners added

Figure 31. - Modifications of turning vanes to prevent flutter.
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Weld after
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Figure 32. - Methods for welding dams in manifolds.
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2.2.5.3 HOT-GAS MANIFOLD

In early Atlas vehicles in which the booster-engine exhaust gases were ducted axially, the
fuel-rich turbine exhaust gases caused boattail fires. Canting the exhaust ducts outwardly

directed the gases into the slipstream and prevented recirculation. In the Atlas sustainer

engine, the exhaust gases were conducted around the end of the nozzle where they were
entrained in the main jet and ejected axially. In the Jupiter and Thor vehicles, the engines

were more exposed to the slipstream, and no serious problems resulted. Each of the four

gimbaled outboard H-1D engines of the Saturn S-1B had an exhaust-stream disposal system
like that of the Atlas sustainer engine.

In the F-1 engine, the turbine exhaust gas is used as film coolant for the nozzle extension. In

the J-2 engine, the turbine exhaust gases are dumped into the main gas stream through

"cat-eyes"*. The tubes downstream of the J-2 turbine exhaust dump are partially film

cooled but primarily regeneratively cooled. The Titan stage I turbine exhaust gases leave the
turbine at 1200°F at 30 psi and are ducted through the oxidizer superheater, where
additional heat is extracted in raising the temperature of the oxidizer pressurant. From the

superheater, the exhaust gases are conducted through a short duct to the outside where they
impinge on the ablative extension. The resultant side loads resolved into axial and lateral

component_ are 90 --+20 lbf and 360 +--50 lbf, respectively. The axisymmetric nature of the
applied loads from both turbine exhausts is calculated to induce a vehicle roll moment of

approximately 250 ft-lbf. Thermal damage is prevented by an insulation blanket placed over
the nozzle.

In the single-nozzle engine system for Titan stage II, roll is corrected by the use of an
additional small conical nozzle that employs turbine exhaust gases. Impingement of these

gases on the ablative surfaces of the main engine nozzle extension, during swiveling, caused
local heating and structural damage. This problem was corrected by bonding low-density

silica matt over the exposed extension areas directly below the roll-control nozzle.

The contribution by the turbine exhaust gas to the overall engine performance can be

significant, the thrust potentially produced by the turbine exhaust gas being usually in the

vicinity of I/2 percent of the total thrust. This exhaust gas can also introduce a nonaxial
thrust or an axial thrust with a moment. For large potential-thrust values (16 000 lbf for the

F-l), careful attention must be given to the structures that must withstand these added
loads.

A looped-tube configuration to allow the turbine exhaust gas to pass into the nozzle gases

was used °nan experimental Atlas sustainer engine. The fuel-rich cutoff left RP-1 trapped in

pockets in the exhaust-gas manifold, and detonations resulting from LOX/RP-1 gel
formation occurred at the start of the following test. The J-2 had a similar potential trap,

*Long, narrow openings between coolant tubes.-
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but the useof cryogenicpropellantsthat evaporatedbetweenrunseliminatedtheproblem.
The J-2 system with cat-eyes and a hot-gas manifold is expensive but has not had significant
hardware failure.

The primary problem with large hot-gas manifolds is the yielding that occurs when the

thermal growth is restricted. The F-1 turbine exhaust manifold has a potential thermal
growth of approximately 1/2 in. radially. Restraining thermal growth has caused

innumerable hardware failures in various hot-gas manifolds. Many designs have been

successful despite the restriction on thermal growth. In these cases, the cyclic life has been

increased to the required value by fixes that reduced the local plastic yielding but did not
eliminate it.

The present F-1 turbine-exhaust manifold (fig. 33) is a tapered hot-gas torus rigidly attached

to the cooled exit ring. "Omega" expansion joints placed around the torus shell allow the

torus to expand. Expansion of the flame shield results in shield bending, but the plastic

ng
band

Tube

Interference

aru Flame

shield

_ust

Return manifold

Rigid Intermittent support

_-Turbine O_nega

exhaust mnlfold Joint

Omega-joint
failure area

L Nozzle extension

Figure 33. - Construction of junction of turbine exhaust manifold and film-cooled

nozzle extension (F-1 engine).
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strain is low enough that 50 or more cycles can be achieved without cracking. The major

problem area h_asbeen at the intersection of the omega joints with the outer ring. Thig ring_
is restrained by being rigidly attached to the stronger cooled exit ring, so that the ring bends
betWeen attachments. The base of tile omega joint attaches to this ring: o11 coold_v____n,

• tension cracks develop. Doublers added to the omega joints to distribute the load over-'a--

longer base have resulted in increased cycle life. Distortion of the hot-gas manifold during

fabrication and operation has resulted in interference between the flame shield and the tube

retaining band, the result being denting of tubes. This problem was caused basically by an

inability to Control adequately the dinaensions of large, flexible manifolds that were subject
to much welding, a braze cycle, and subsequent deformation during operation. This F-I

tube denting was eliminated by increasing the clearance between the flame shield and the

retaining band from a few thousandths to about four-tenths of an inch.

Classic sliding-pin and A-frame designs that allow unrestrained thermal expansion have been

used successfully for a long time in turbojets and ramjets and are applicable to hot-gas

manifolds in rocket engines. One such design was proposed for the 1_-1 but was not used

because the local thermal stresses in the production design were reduced enough to allow

successful repeated operation. In the F-1 turbopump, radial pins were used to solve a

problem in differential thermal expansion. In one of the original F-1 turbine exhaust
manifold designs, sliding pins and slotted clevises were employed to eliminate thermal
stresses. Because of a combination of insufficient installation clearances, mechanical loads

that were too high, pins that were too small and too short, and thermal clearances that were

inadequate, the pins were overloaded and were bent. This design was dropped because of

difficulties of reworking it within the required schedule, and the hardware was modified to

the present type shown in figure 33. The J-2 turbine exhaust manifold has no removable gas
seal and thus can be somewhat simpler. The difference in expansion between the hot duct

and the cold tube bands is taken primarily by bending in the base plates.

For designs in which the thermal loads are kept low enough to maintain the material in the

elastic state, relatively brittle materials have been used (e.g., Waspaloy and Rene 41 in

turbojet designs). When thermal loads on a structure are high (e.g., the F-1 turbine-exhaust
manifold), materials that retain ductilities of about 20 percent or higher at elevated

temperatures are required (e.g., 347 CRES, Hastelloy C, Inconel 625, and L-650).

Flanges ol'teh are heated rapidly during operation and sustain major thermal gradients that

cause warping and dishing and resultant seal leakage. Splitters or other external attachments
increase this problem by inducing additional thermal and mechnical loads. Very thorough

analysis of the distortions caused during startup and operation can help reduce but probably

not eliminate the problems. Some seal-surface deflection for low-pressure seals can be

allowed by using self-energizing pressure-actuated seals, which can allow flange deflection of

up to 0.010 in. per leg and still give seal tip contact to the flange. Bolt preloads on flanges
must be sufficient to keep the flanges in contact under the high thermal and mechanical

loads that develop during operation.
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2.2.5.4 COOLANT-RETURN MANIFOLD

A coolant manifold is positioned at the end of a regeneratively cooled chamber for either

single-pass (an inlet manifold) or double- or multiple-pass system (a return manifold). The
term "single-pass" or "multiple-pass" refers to the number of times the coolant flows

through the axial coolant passages in the nozzle wall before it is used in the injector. The

same coolant flows alternately upstream and downstream a selected number of times in

order to provide adequate nozzle cooling surface area with a given size of individual

passages. Both inlet and return manifolds are subject to similar problems, primarily
overheating and inadequate braze joints. The double-pass coolant-return manifolds used on

all Titan engine systems are included as an integral part of the extension attachment flange.

The arrangement simplifies construction and eliminates extensive welding, thus decreasing

the incidence of weld leakage and reducing fabrication expense.

Good cooling is provided by using individual 180 ° tube elbows for propellant flow reversal

at the nozzle exit. A support ring, which is often required for nozzle attachments, is not

provided by this method. The chamber is extremely difficult to drain, and removal of solid

contaminants (chips, broken seals, etc.) often is impossible. Continuous manifolds into
which the tubes are inserted provide support for attachments and are much easier to drain
and clean.

Tubes with swaged square ends have been inserted into slots in the coolant manifold (fig.

34(a)). Problems have resulted from the (!) required insertion of fillers or powder into the

Manifold

Squared tube ends _

oles

,,,,,,

Circular tube end

Figure34. - Configurationsfor attachingtubesto manifolds.
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corners because the tubes could not be made with sharp-enough corners; (2) peeling of the

braze joint; (3) "oil canning" of the flat tube walls; and (4) difficult tolerance control.
Tubes with circular ends inserted into round holes in the manifold (fig. 34(b)) have

produced much more successful bonds. Expansion of ttle tube end while it is in place within

the manifold (F-1 technique) has remained within the closely controlled braze gap

tolerance, and bonds produced have been highly successful. Braze foil preplaced throughout

the entire braze joint has been investigated and looks promising. Most production chambers

now use powder or paste successfidly. Depending on the particular design, maximum braze

gaps of 0.004 to 0.006 in. have been satisfactory. A braze-joint length of at least one tube
diameter usually has produced acceptable joint strength. Incompatible plating materials and

materials with dissimilar brazing characteristics and thermal expansion coefficients have

resulted in unsatisfactory joints. The inclusion in the furnace of braze samples of a new joint

design during the brazing of a chamber with an existing joint design has helped to point out

potential problems in the new joint design. Verification of final material properties as
affected by material aging characteristics has been obtained by including braze samples

during production-chamber furnace brazing. Although hand-brazed chambers have been

successfully built, furnace brazing has produced a much more reliable product.

Complete braze bonding throughout the joint length, even when it is not needed for basic
strength, increases heat,transfer contact area and improves ring and joint cooling. Braze gaps

can interrupt the heat-conduction path between tubes (fig. 35). Voids and heat-transfer
barriers have resulted in overheating during operation. Minimum sections in manifolds have

produced cooler manifolds.

Hot-gas side

f Prlmary tube

 Seoo dary tube
v/////////,e'Ze'l//////////////_

Coolant slde .......

Braze gap --J

Hot-gas side
Primary tube_,_,,,,_=_

Secondacy tube_

Braze gap---/

Figure 35. - Two types of braze gaps that interrupt the heat-conduction path between tubes.
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Coolant manifolds that project into the main hot-gas stream have been subject to

overheating, erosion, and leakage. Manifolds that are not in direct contact with the gas

stream have not had such problems. Overheating typically is more severe for the

down-tube/manifold joint than for the up-tube/manifold joint, because the thin,

just-developing boundary layer results in a higher liquid-side film coefficient along the

up-tube joint.

2.2.6 Nozzle Attachments

Major structural loads such as those from turbopumps or gimbal arms normally are taken

through the chamber section, where heavy construction is already required for

chamber-pressure loads. The majority of nozzle and nozzle-extension loads result from the

mass of and attachment techniques for

• Propellant manifolds and turbine exhaust-gas manifolds

• Thermal insulation

• Small plumbing and instrumentation and associated brackets

• Side load supports ,,

• Restrained attached or adjacent major ducting

• Handling lugs and brackets

2.2.6.1 ATTACHMENT TECHNIQUES

Tube-wall chambers have failed as a result of severe local stress concentrations produced by
direct attachments to the tubes or to thin structural sections. Welding in general has not

been acceptable because of local tube stresses and the problems of welding thin-wall

sections; brazing has been more successful. Better practice has been to connect attachments
to a nozzle structural member such as a retaining band rather than directly to the tubes.

Excessive local external loads have resulted in tube depressions and early tube failures.

The welding of attachments to nozzle structural members that are age hardened during

furnace brazing has resulted in failure of the structural member due to loss of the

age-hardened induced strength; welding the attachments prior to furnace brazing has solved

this problem. Local weld distortions and internal stresses have also resulted in failure of
relatively thin nozzle structural parts where the attachments were welded; careful design and

fabrication in these areas has been sufficient to resolve these problems in most cases.
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Majornozzle load inputs must be analyzed not only for local attachment adequacy but also

for their effect on the overall load-carrying capability of the nozzle. These loads are

amplified as gimbal accelerations increase. Early F-I engine testing revealed insufficient

nozzle bending resistance at the end of the continuous jacket, and axial stiffeners had to be

added. Increased nozzle loads result from support of components adjacent to but not

integral with the nozzle, such as the turbine exhaust manifold inlet, turbine exhaust ducting,
propellant ducting, and thermal shields or barriers. Loads from these items often are

significant and must be included in the original design, not added as an afterthought.

Gimbaled nozzles support only the aft portion of hardware that is gimbaled, but in many

cases this portion includes fairly heavy turbine-exhaust and propellant plumbing.

Addition of accessory structures that have operating temperatures considerably higher than

those of the nozzle structure causes thermal loads that are unacceptable if relative

movement between the assemblies is precluded (sec. 2.2. I. 1.3).

2.2.6.2 EXTENSION JOINT FOR LARGE CHAMBERS

For large thrust chambers, the nozzle/nozzle-extension joint normally consists of two
large-diameter (up to 120 in.) flanges, with one flange sometimes considerably cooler than

the other during operation. Designing this joint with enough flange thickness and heel length

to provide sufficient rigidity to prevent flange distortion, rotation, and general yielding

during handling and operation would require heavier flanges than are normally allowable.

Designs and manufacturing techniques developed to reduce the weight of these large

assemblies usually result in hardware conditions that are more representative of sheet-metal
tolerances than the normal machine tolerances. This condition in turn results in

connect-flange conditions that produce out-of-roundness and waviness because of weld

distortions, flange distortion due to low-rigidity flanges, general yielding, and surface

finishes that do not meet regular seal requirements.

Overall flange out-of-roundness between mating flanges of as much as 1.5 percent of the
flange diameter has been compensated for by using oversized bolt holes, radial bolt slots on

one or both flanges, and portable assembly alignment tools to allow bolt insertion in

out-of-line bolt holes. The radial bolt holes also allow differential thermal expansion

between the two flanges. A bolt spacing equal to the bolt head diameter plus twice the

flange thickness has been found adequate to minimize unsupported areas and force the two
flange contours to conform closely to each other.

Flange waviness resulting from fabrication techniques and from rotation, flange distortion,

and flange surface irregularities- all require seals that have large crush or compression
ratios, are flexible, and still produce an adequate sealing force after being crushed or

compressed up to 50 percent. Elastomeric seals have been effectively utilized for joint

temperatures up to 500°F. Specially constructed "tadpole" asbestos seals (fig. 36) with
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Figure 36. - Flange andsealdesignfor usein highoperatingtemperatures.

Inconel-mesh rope cores have been used for higher operating temperatures; these seals have

been retained better when one of the flange surfaces was grooved. For seals designed to have

the crush portion match the groove area, the groove edges have added seal points to prevent

local leak paths. Continuous seals or seals with flat joints have been found necessary to

prevent seal leakage or flange distortion due to local areas of increased seal thickness.

The tadpole type of seal yields during installation and has been nonreusable because of

mismatch of flange imperfections and lack of resilience upon reassembly. In nonflight-type,
noncritical seal areas (e.g., the J-2 nozzle-mounted diffuser-to-chamber joint), simple
asbestos rope has been satisfactory.

2.2.7 Instrumentation Provisions

Most nozzles in the course of design and development are ground tested to verify the design

and evaluate performance. In these full-scale hot-firing tests, hot-gas-side wall temperature,

static pressure on the nozzle wall, and stress (strain) at key stations in the nozzle structure

must be measured. Current methods for making these measurements require that the nozzle
designer make provision during design to accommodate the necessary instruments, materials,

and associated equipment.

57



2.2.7.1 TEMPERATURE MEASUREMENT

Attempts to measure the temperature of the nozzle hot-gas wall have been difficult in the

past. Radiation methods have not been satisfactory. Attachment of thermoeouples to the

liquid side of the tube hot crown has resulted in leakage where the thermocouple wires

pierced the back side of the tube, and has produced liquid-side boundary-layer disturbances

that resulted in erroneous temperature measurements. Standard-size thermocouples attached

to the hot side of the tube crown have burned out or have produced erroneous temperature

measurements because the thermocouple disturbed the gas-side boundary layer.

Development of microminiature thermocouples has resulted in satisfactory measurement of

tube-wall temperatures on the hot-gas side. Measurements with 0.010-in. microminiature
thermocouples bonded to the hot-gas side of the tube crown in the chamber of the Atlas

sustainer engine revealed that temperature spikes of 100 millisecond duration were

occurring after one-half to one minute of mainstage operation and were causing tube failure

(ref. 51).

2.2.7.1.1 Thermocouples

Early thermocouple assemblies that stuck out from the thrust chamber frequently were

damaged by handling during engine assembly or by vibration during testing. Thermocouple

tip breakage during installation was eliminated by annealing tips that had been work
hardened during the flattening process.

Thermocouple assemblies that were inoperable or that provided erroneous measurements of

temperature have been produced by improper installation techniques. Reference 52 contains

the recommendations developed for installation of microminiature thermocouples on the
thin-wall tubes of the J-2 thrust chamber. For tubular chambers that have already been

furnace brazed, a heated tungsten probe has been used to melt the tube-to-tube braze and

produce a local tube-waU indentation or dimple (refs. 53 and 54). Chamber tubes have often

been pierced by this technique, however, and repairing the leaking tubes has been a difficult
and time-consuming process. Thermocouples have also been run along the tube crevice from

the nozzle exit in order to avoid damaging the tubes with the heated probe while making the

tube indentation; this technique has been satisfactory near the nozzle exit. A much superior
technique in comparision with the heated-probe method is to predimple the tubes before

stacking (ref. 44) and place a Refrasil cord in the dimples to prevent their filling up with

braze alloy during furnace brazing. The dimples have been placed in adjacent tubes rather

than in the tube to which the thermocouple is to be attached, in order to avoid restricting

the flow in the tube for which the wall measurement is to be made (ref. 55). The

thermocouple is inserted through the dimple between the tubes (whether the tubes are

predimpled or dimples are produced by the heated tungsten probe), the tip of the
thermocouple is tack welded to the tube, the thermocouple is brazed to the tube, and the

dimple and exposed thermocouple sheath are brazed over. Thermocouples have been brazed
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onto the tube surface by combustion torches, argon plasma-arc torches, quartz lamps, and
Dalic-process gold plating (ref. 56).

Although thermocouple installations would be much better if the thermocouple were brazed
to the tube before tube stacking and brazing, tile junction between the microminiature

thermocouples and the standard thermocouple wires has not yet been developed to the

point at which it can with certainty withstand a furnace braze cycle.

Directing the thermocouple tip in the upstream direction, relative to the hot gas, has

produced a minimum interference with the boundary layer and resulted in a truer
temperature measurement. Reference 57 contains a discussion of measurement errors

introduced by thermocouple installation and measurement techniques. The actual junction

location for these high-resistance microminiature thermocouples can be determined within a

few thousandths of an inch by means of a Wheatstone bridge having a precision of e 0.1%

(ref. 58). The junction location has been changed by tack welding upstream of the original
junction.

A technique for measuring gas-side wall temperatures that consists of spot welding a single
Platinel* thermocouple wire less than 0.001 in. in diameter to the stainless-steel

thrust-chamber tube is presented in reference 59. The thermocouple wire is sheathed in a

quartz insulator with a diameter of less than 0.003 in. Nickel or copper is then electroplated

over the thermocouple and insulator. Installation techniques are includ_ in the reference.

2.2.7.1.2 Braze Patches

Attempts to use temperature-sensitive paints, crayons, and patches on the inside of thrust

chambers to determine maximum tube-wall temperatures have been unsuccessful. Braze

patches, however, have been used successfully to determine limiting tube-wall temperature.
A large range of melting temperatures is available (e.g., from about 36 I°F for Sn-37Pb to

1832-1868°F with Cu-35Au) (ref.60). A thin patch is melted onto the hot-side tube wall

and an "X" scribed on the patch. When the patch reaches its melting point, the "X" is
obliterated. Braze patches are easier to apply than thermocouples, especially in small tubular

annular thrust chambers and in already completed chambers. Large numbers of braze

patches can be readily applied and are especially valuable in indicating temperature profiles

around or along the tube walls. However, the braze patch technique is subject to several
problems, as follows:

• A braze patch that is too thick or too low in conductivity will result in the

braze-patch surface reaching a significantly higher temperature than the tube
surface would have reached without the braze patch (ref. 61).

*Registered trademark of Englehard Industries, Inc. U.S. patent 3,066,177, Nov. 27, 1962.
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• Patch material must be compatible with tile tube material to avoid

stress-corrosion cracking (ref. 60).

• Patch erosion may obliterate tile "X" without tile patch having reached tile

remelt point (ref. 62).

2.2.7.2 PRESSURE MEASUREMENT

The measurement of static pressure on the nozzle wall requires pressure taps in the wail.

Provisions for these taps are made during nozzle design and assembly. At designated

locations in the nozzle, the designer provides for dimpling of the tubes during the tube

forming process as discussed above for installation of themlocouples. During assembly, a

ceramic rod or Refrasil cord is placed in the dimple to prevent the braze from filling the

dimple. Following the furnace brazing of the tube assembly, the rod or cord is removed, and

a pressure-pickup tube is inserted in tile dimple and brazed in place. Care is taken to ensure
that the pressure tap does not project into the hot-gas stream, but remains level with the

inner wall. The length of the pickup tube from tap to recording device is kept as short as

possible to achieve a high degree of accuracy in the measurement.

2.2.7.3 STRESS (STRAIN) MEASUREMENT

As noted earlier, stress concentrations due to retaining bands and local attachments on

nozzles often result in tube failures. Stress of course is not measured directly, but is

determined from strain measurement. Very small strain gages have been used to monitor
strains in the fillet of the tube-to-band joint close to the maximum stress-concentration

point. Strain gages have also been used to determine deflection of bands subject to external
loads from accessories.

The nozzle designer is not involved in making any particular provisions for stress (strain)

measurements. On the completed nozzle, strain gages are installed at designated stations by

specialized trained personnel. The area of attachment is cleaned mechanically and

chemically and wiped dry; the gage then is cemented on with epoxy or cyanoacrylic resin.
Preferably, the strain gage is mounted on a flat surface that will not be exposed to elevated

temperature. Small gages (< 0.030 in. in length) act like heaters, and require cooling by

conduction. The gage is checked out electrically, and preset strain or resistance is read on a

meter. Bonding to the metal is checked by observing the amount of drifting on the readout

instrument. Measured strain values are converted to stress values by the stress analysts.

2.3 TESTING

Full-scale hot-firing tests of rocket components are used to isolate potential engine-system

failures. The structural strength, cooling capacity, and performance of the nozzle are
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checkedby full-scalethrust-chamberfirings.Full-scalestaticfiringof thecompleteengineat
altitudes near those of flight is the final demonstrationof structural integrity and
performanceprior to actualflightof thevehicle.Modeltestingisusedto verify theaccuracy
and applicability of analyticaltechniquesand to study nozzleproblemsthat cannotbe
solved accurately by analysis.Standard proceduresfor calculating rocket engine
performanceand recommendationsfor testing and data acquisitionare presentedin
references63and64.

2.3.1 Full-Scale Testing

2.3.1.1 GROUND TESTING

Ground testing of altitude engines has been the source of problems in several development

programs. As shown in the following examples, early engine development programs

underestimated the problems associated with flow separation.

The Nomad engine had an area ratio of 25 and a chamber pressure of 160 psi; it was

predicted that during ground static test firing the nozzle would run "separated," but it was

assumed that the flow separation would affect only performaqqe and could easily be
corrected. Actually the separated flow was unstable and asymmetric and caused large

oscillatory loads on the thrust chamber. The test stand had to be strengthened to restrain

the engine.

The J-2 engine has a large expansion area ratio (27 to 1), a slow pressure buildup during

start, and an adverse pressure gradient in the nozzle. Very large unsteady side loads due to

flow separation during both startup and steady-state operation caused nozzle structural
failures (ref. 23). The nozzle structure was strengthened, but it was not practical to build a

flightweight structure that could absorb the startup loads. As noted earlier, support arms

were added from the test stand to the nozzle during start and detached remotely during the

test run to allow gimbaling of the engine; in addition, a short bolt-on diffuser was attached

to the nozzle to eliminate flow separation during niainstage operation.

Early tests of the Titan I stage II engine were conducted at sea-level conditions with ablative
extensions from area ratio 6 to exit area ratio of 25. Separation occurred approximately 8

in. forward of the exit, resulting in a recircutation of atmospheric oxygen and severe erosion

at the separation plane. A clam-shell "corset" was placed about the throat and combustion

chamber during these tests to provide the additional support required because of the

separation loads.

2.3.1.2 PERFORMANCE EVALUATION

To evaluate nozzle performance, the stagnation pressure downstream of the plane where

combustion is essentially complete must be accurately known. Static-pressure measurements
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at the injector face, corrected for heat addition (Rayleigh flow), _an be used to calculate the

stagnation pressure at the nozzle throat only under certain / conditions such as liquid

injection, efficient combustion, and uniform pressure distribution on the injector face. The

method of measuring static pressures along the wall in the combustion chamber and

correcting for the local gas velocity provides accurate nozzle stagnation pressures. Figure 37

shows the static-pressure distribution measured along a combustion-chmnber wall (ref. 65).

The rise in wall pressure upstream of the throat is produced by turning of the flow near the
wall at the start of contraction.
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Figure 37. - Distribution of static pressure measured along combustion-chamber wall (ref. 65).

2.3.2 Model Testing

The accuracy of nozzle efficiencies obtained from model tests is directly proportional to the

accuracy of the measurements of thrust, total pressure, and flowrate. Since nozzle-efficiency

differences of 0.2% generally are considered significant, great care must be taken to obtain
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the required accuracy in measuring these parameters. Model size must be large so that errors
in wall shape are minimized. When only a portion of the nozzle is being studied,

near-full-size cold-flow studies often are possible.

An important limitation of cold-flow testing is tile large difference between tile expansion

characteristics of typical hot-firing exhaust products and typical cold-flow gases. Most

exhaust gases have a specific heat ratio 3' of 1.1 to 1.3; most cold-flow tests are conducted
with air, which has a 3' of 1.4. Gases with lower 3` values that are inexpensive, incombustible,

nontoxic, and noncondensing during expansion are not known. Tetrafluoromethane (CF,)
has been used for cold-flow testing because of its low 3` (3` = 1.2); however, losses of up to 3

percent due to nonequilibrium expansion have been observed in model testing with CF 4 . A
complicated analysis is required to account for the nonequilibrium expansion loss.

An accurate method for scaling from cold-flow results at ")"= 1.4 to hot-firing conditions

does not exist. The most satisfactory method is to use cold-flow results to develop and

verify a calculation technique, then use the calculation procedure to predict hot-firing
results.

A frequent problem in cold-flow testing is condensation of the gas during tile expansion

process (ref. 66). Room-temperature air condenses at an expansion ratio of about 14 with a

total pressure of 100 psi. The expansion ratio at which condensation begins can be increased
by decreasing the total pressure; however, total pressures of less than 50 psi generally are

not practical because, as total pressure is decreased, the magnitudes of forces, flowrates, and

pressures that must be measured decrease proportionally. Condensation can best be detected

by comparing the measured wall-pressure/total-pressure profile at several total pressures

with calculated values. When condensation occurs, the actual wall pressure will deviate from
the predicted curve, becoming higher than predicted (fig. 38).

Optical methods are particularly suited to cold-flow testing; however, most of the data
taken are only qualitative. Quantitative data can be obtained with interferometry, but the

sensitivity and expense of the system eliminates it for most facilities. Shadowgraphs provide

limited information. Most optical measurements of nozzle flowfields are made with

schlieren systems. Very short exposure times are required to obtain sharp definition. A
high-intensity short-duration light source such as an electrical-discharge spark gives good
results.
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asa function of L/R t.
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3. DESIGN CRITERIA and

Recommended Practices

3.1 NOZZLE CONFIGURATION

3.1.1 Throat Geometry

3.1.1.1 UPSTREAM WALL

The throat upstream-wall geometry shall be based on a trade of length against

performance and shall minimize the wall surface area in the region of maximum
heat load.

Bell nozzles should have a constant-radius arc for the upstream walls, the ratio of wall radius

to throat radius being kept greater than 0.6. To obtain the best compromise of nozzle

efficiency and throat surface area exposed to gas conditions near Mach 1, maintain the

upstream-wall radius ratio at about 1.0.

Annular nozzles should have a constant-radius upstream wall, with the inner wall radius

equal to the outer wall radius, which is equal to the throat gap. When the two wall radii are
not equal, make the smaller radius either equal to the product of throat gap and the ratio of

the larger radius to the smaller radius, or three times the throat gap, whichever value is less.

Avoid geometries with one wall concave to the flow upstream of the throat.

Use a reference-streamline series-form transonic solution (e.g., ref. 4) or the method of

reference 5 to obtain a line along which supersonic flow properties are known for the

selected transonic geometry; this line then serves as a starting line for the nozzle design or

flow analysis. Employ a 29-term series for the commonly used radius ratio of 1.5. Increase

the number of terms for small approach radii to obtain a close fit to the desired wall
geometry. Use a constant specific heat for the calculation of the transonic solution for

typical rocket nozzle designs.

3.1.1.2 DOWNSTREAM WALL

The throat downstream-wall geometry shall min#nize the overall nozzle length,

but shall provide an expansion rate low enough to minimize losses due to

chemical nonequilibrium.

Use a constant-radius-arc transition between the throat and contoured wall. When

nonequillibrium losses are not a consideration, the radius should be the smallest that can be

economically fabricated. For tube-wall nozzles, the minimum tube-bend radius should be
twice the tube outside diameter for round tubes of stainless steel, nickel, or copper.
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Whennonequilibriumlossesmust be considered,select the downstreamtransonicwall
geometryin conjunction with the supersonicwail contour design,usingthe procedure
describedin section3.1.2.1.1.2.

3.1.2 Expansion Geometry

3.1.2.1 BELL NOZZLE

3.1.2.1.1 Optimum Contour

3.1.2.1.1.1 Equilibrium Flow

For equilibrium flow, the expansion geometry shall provide maximum nozzle

performance for the given flowrate, combustion products, and envelope.

For bell nozzles (equilibrium flow), select the transonic wall geometry and solve the

transonic flowfield. On the basis of a starting line from the transonic solution, the selected
downstream transonic wall, and equilibrium gas properties, compute the flowfield from the

starting line to the end of the downstream transonic wall; design the remaining wall to a
selected length and exit area, employing a bell-nozzle design program based on reference 14

or 16. Consult reference 67 (Appendix A) or reference 68 for a list of available programs.

3.1.2.1.1.2 Nonequilibrium Flow

When performance losses due to nonequilibrium effects in the throat region are
significant, the geometry from the throat to an area ratio of approximately 3 shall

control the initial expansion to maintain composition near equilibrium.

Select several wall geometries just downstream of the throat, and compute the flowfield to

the end of the controlled-expansion section. On the basis of the flow properties at the end
of the controlled-expansion region as a starting line, design the remainder of the wall with a

bell-nozzle design program for equilibrium flow.

Use simple wall geometries for the controlled-expansion wail: circular arcs with large radii

when the expansion is controlled to area ratios of less than 3, and combinations of circular
arcs and straight segments to control expansion to area ratios greater than 3. For all but

extreme cases, very small gains in performance can be obtained with more complex shapes,

and the added freedom introduced in the contour selection complicates the design problem

unnecessarily.
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3.1.2.1.2 Nonoptimum Contour

When performance losses of ttle order of 0.25 percent are tolerable or when

rigorous optimization methods do not exist. The expansion geometry shall be a

simple curve that provides the best performance.

For the first condition, a canted-parabola contour as shown in figure 5(a) is recommended

for the expansion wall. For conditions where rigorous optimization methods do not exist

(e.g., short nozzles with high area ratio), the truncated ideal nozzle of reference 14 or a

parabolic wall contour is recommended. From the extrapolated region of figure 5(b), get a

trial estimate of the initial and final wall angles for the parabolic contour. To maximize

performance, vary the trial angles and compute the efficiency of each configuration.

Design three-dimensional nozzles by computing the performance of a set of shapes and

selecting the nozzle with highest performance. A good first attempt is an equilibrium

optimum plane-flow or axisymmetric contour that approximates the three-dimensional

shape.

3.1.2.1.30verexpanded Nozzle

L_ ,!::

Whenever possible, the contour of the nozzle for an altitude eng#te:that must be

ground tested at overexpansion pressure ratios shall )tot lead to sepdrated flow.

Design an optimum nozzle contour (ref. 14) and check for flow separation (fig. 39). If the
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Figure 39. - Mach number vspressure ratio for separated flow for
three specific-heat ratios (ref. 25).

67



exit wall pressure is within 20 percent of the separation pressure, reduce the expansion ratio

or select a nonseparating, nonoptimum contour. Predictions of separated flow should be

regarded as development guides only. Verify marginal nozzles by full-scale operation.

To select a nonoptimum contour for overexpanded operation, generate a series of parabolic

contours and compute the flowfield of each. Examine the pressure profile from throat to

exit. Look for regions of increasing pressure towards the exit. A desirable contour will
always provide a continuously decreasing wall pressure. Therefore, if the wall pressure does

not continuously decrease, change the nozzle contour to a parabola with a smaller initial

wall angle or a larger exit wall angle. Select a contour that raises the exit-wall pressure above

the separation value, provides a continuously decreasing wall pressure, and produces
acceptable performance.

Consult section 3.3.1.1 for recommendations on testing nozzles with separated flow.

3.1.2.1.4 Nozzle Extension

A nozzle extension shall be a simple geometric shape that provides near-maximum

performance for the nozzle plus extension.

-2"

When adding a short extension to an existing nozzle with area ratio in the range 10 to 20,

use a straight wall from the end of the nozzle to the selected end point. Select several

extension angles and compute the performance of each extended nozzle within the available

space envelope. Select the final configuration on the basis of a performance/weight tradeoff.

When the existing nozzle area ratio is less than 10 or when long extensions are added, use
contoured extensions such as the canted parabola or optimized extension-wall contours.

3.1.2.1.5 Small Nozzle

3.1.2.1.5.1 Geometry

The throat wall geometry of a small nozzle shall limit boundary-layer buildup,

and the nozzle shall have a simple shape that facilitates fabrication.

For nozzles with throat Reynolds numbers less than 1 × 104, keep values for Ru/R t tess

than 2 when a high discharge coefficient is desired. See figure 8 for discharge coefficient
versus radius ratio for small nozzles.
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Convergent and divergent sections should be straight-walled, with wall angles of 25 ° to 45 ° .

Keep the expansiori area ratio low.

3.1.2.1.5.2 Flow Analysis

Methods for flow analysis of small nozzles shall inchtde viscous effects in the

generation of the core.

Analyze the flow by a method similar to that of reference 30, which includes viscous effects
in the supersonic-core solution. Do not employ an inviscid-core solution corrected by a

boundary-layer perturbation.

3.1.2.2 PLUG NOZZLE

The plug-nozzle configuration shah maxbnize nozzle performance including the

thrust from the base.

For gas-generator engine cycles, use truncated ideal nozzles with base bleed. For topping

cycles, regeneratively cool the base plate without base bleed, or bleed the minimum fuel

required to cool the base.

Shrouded nozzles are recommended for area ratios higher than 40 and thrust levels less than

1 X 106 lbf; for other conditions, select the nozzle configuration on the basis of a rough

layout that compares the shrouded and unshrouded nozzles. For very large engines, use an

unshrouded nozzle with an injector that is made up of a number of segments.

With a shrouded nozzle, use an up-pass cooling circuit to obtain the high rate of curvature at

the throat that will result in a high rate of heat transfer to the coolant.

3.1.2.2.1 Base Design

3.1.2.2.1.1 Performance

The base design shall provMe maximum base thntst from the gas bleed available.

With a deep-cavity base, introduce the bleed gas radially inward or outward at low velocity;

with a porous base plate, inject the secondary gas through the plate.
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Scalethe resultsof cold-flowmodeltests(ref. 32) to predict base pressures for truncated

ideal nozzles. Use theoretical base-pressure methods (refs. 33 and 34) for other

annular-nozzle configurations or for examining the effects of exit flowfietd on base pressure.

3.1.2.2.1.2 Packaging

The base design shall provide room for engine components.

In most cases the best engine package can be obtained with a porous-plate base cover near

the nozzle end, the base cavity then being left available for major engine components (e.g.,

turbomachinery).

3.1.2.2.1.3 Cooling

The base bleed shall cool the base region,

Distribute the bleed gases evenly or bias the distribution to introduce most of the gas in the

outer perimeter of the base. Either of these distributions will tend to shield the base from

the high stagnation temperature of the primary exhaust gases and produce high base

performance. Base heating rates can be predicted only approximately and must be verified

experimentally.

3.1.2.2.20verexpanded Nozzle

The contour of a plug nozzle for booster application shall minimize the effect of

shocks impinging on the wall of the nozzle during recompression.

Use contours of the truncated ideal nozzle to minimize the strength of shocks incident on

the wall during low-altitude operation. If incident shocks are expected (e.g., when nonideal
contours are used), analyze the nozzle flowfield to determine if boundary-layer separation

occurs. Design the cooling circuit in the separated-flow area to handle heat flux from

separated flow.

3.1.3 Nozzle Contour Tolerances

The tolerances on nozzle contours shall ensure that a nozzle falling within

tolerance limits will produce the required thrust and thrust-vector alignment.

For bell nozzles, set a tolerance on the average throat diameter such that a nozzle within

tolerance provides throat areas consistent with the thrust requirements and allowable
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chamberpressure.Setthe tolerance on the circumferential variation in throat diameter to

limit the throat configuration so that the thrust vector is within the gimbal adjustment

range. For annular nozzles, regulate the throat-area variation by tolerances on the mean

throat gap and mean distance from the nozzle axis to throat gap. Control throat-gap

variation by specifying a tolerance on the mean throat gap and a tolerance on the gap
deviation from nominal.

Establish tolerances that limit wall angles downstream of the throat to + 1° of the design

contour for the first 10° of overturning and + 2 ° for the rest of the nozzle.

3.2 NOZZLE STRUCTURE

3.2.1 Regeneratively Cooled Nozzles and Extensions

3.2.1.1 INTERMITTENT RETAINING BANDS

3.2.1.1.1 Structural Adequacy "

Retaining bands shall accept all m_zzle hoop loads. _.

Shape and size the retaining bands for start-transient, overexpanslon, and gimbal loads. Do
not require the tube bundle to withstand any loads from exhaust gas or mechanical forces.

Make the bands rigid rather than flexible.

Calculate structural-dynamics characteristics by the structural-analysis methods of
references 37 and 69.

Instrument the tubes and retainer bands at the areas that will be subject to high stress during
operation.

3.2.1.1.2 Tube-Bundle Rigidity

Retaining bands shall provide rigidity to the tube bundle.

Use simple flat-band designs such as those in figure 40(a) for configurations with low

buckle-resistance requirements, and more rigid designs such as those of figure 40(b) for

configurations with high buckle-resistance requirements. Within a given nozzle, in most

cases, bands of the (a) type are adequate for regions near the throat, whereas bands of the
(b) type often are required near the exit.
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giillll_

3
(a) Low buckling resistance

(b) High buckling resistance

Figure 40. _'ecommended designs for retaining bands to provide desired degree

of tube-bundle rigidity.

3.2.1.1.3 Tube Support

Each retaining band shall provide sttpport ht the radial d#'ection J?)r each tube.

Maintain minimum braze gaps between tube and band consistent with the braze alloy.

Do not force bands against tubes by local external loads (fig. 15(d)), interference with all

external manifold (fig. 15(e)), or an inconsistent band angle (fig. 15(c)).

Fill in excess gaps in the tube-to-band fit with shims as shown in figure 15(f).

Do not place a band over or next to a sudden change in tube shape or a tube discontinuity.

Use a thin band section at the edge of the band as in figure 40(a) rather than a thick section.

3.2.1.2 TUBE SPLICE JOINTS

Tubes shall not be subject to increased wall temperature and leakage at splice

joints.
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Whenever possible, coolant tubes should be single continuous units without splice joints. To

allow a high taper ratio, specify a high-ductility tube material such as 347 CRES or nickel.

If a splice must be made, use a one-and-a-half pass or similar construction to increase the

number of tubes in the aft end of the nozzle. Contour the splice smoothly.

Avoid stress concentrations on the tube crown by using a secondary tube with a straight hot

side as shown in figure 4 l(b) rather than one with a joggle in the hot side as in figure 41(a).
Do not form small-radius bends or breaks in the tube.

Pr lraary | Secondary

.i

(a) Tube with joggle on hot-gas side (b) Tube with joggle retnoved from hot-gas side
- .U!.

Figure41. - Recommendeddesignfor avoidingcoolant-tubejoggleon hot-gassideof tube.

For tubes with diameters greater than 0.5 in., the "D" joint of figure 16(b) is recommended
over the rectangular joint of figure 16(a).

3.2.2 Film-Cooled Extensions

3.2.2.1 SLOTS

The extension shall provide for thermal growth without distortion of the slot.

A design such as that of figure 42 will accommodate thermally induced growth. Avoid
designs that restrict thermal growth and produce permanent deformation.

For the shingles and body, employ ductile materials such as Inconei 625, Hastelloy C, or
347 CRES.

Avoid large steps in the wall contour at the skirt attachment point. If there is a large

separation between gas streams, then mainstream detachment and reattachment,
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_-- Hot-gas side

Figure 42. - Recommended joint configuration to allow for shingle expansion in film-cooled

nozzle extension without distortion of the slot.

accompanied by irlci'eased local heating, occur. Provide additional film cooling at the

attachment point. Determine the amount of film required experimentally, using full-scale
hardware. Calculate film-cooling effectiveness by the methods of references 38 through 40;

modify the results as necessary by the methods of references 41,42, 43, and 70.

3.2.2.2 ATTACHMENT-AREA GEOMETRY

The geometry of the attachment area shall produce minimum mixing of the main

supersonic gas stream and the gas film coolant.

Maximize the coolant injection velocity, minimize the gas-stream separation distance, and

inject parallel to the main gas stream, with a geometry such as that shown in figure 43.

3.2.2.3 EXTENSION STRUCTURE

3.2.2.3.1 Inner Supports/Coolant Distribution

Internal structure-reinforcing members shall not lead to uneven coolant
distribution.

Punch holes in the center of the vertical leg of each member, as shown in figure 19. Make

the hole diameter equal to about 2/3 of the Z height, and space the holes about one
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L Turb| ne exhaust \,_7"

Turbine exhaust
_nifold

Figure 43. - Recommended attachment-area geometry for minimum mixing of chamber gas

and coolant gases in a film-cooled extension. .., . j_:

diameter apart to minimize the resistance to circumferential flow without greatly reducing

the rigidity of the structure.

3.2.2.3.2 Attachment of Inner Supports

The attachment of inner support members to the inner wall shall minimize the

disturbance to the hot-gas boundary layer.

Attach the support members with spot or seal welds; grind the welds nearly flush with the

parent metal.

3.2.2.3.3 Structural Stiffness

The extension shall not be subject to excessive flexing.

The recommended designs for retaining bands are shown in figure 40; construct the aft

retaining band as shown in figure 44. Overdesign aft retaining bands by 50 percent during
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the initial design to allow for the uncertainties of the start-transient loads.

Put insulation under the bands and scallop the band edges (fig. 21) to reduce band

temperature if necessary.

Space the nozzle bands to limit rippling of the hot gas wall and avoid disruption of the
hot-gas boundary layer (fig. 22). See section 3.2.1. l for recommended procedures for design

of retaining bands.

Nonyielding aft band

Nozzle extens Ion

_.. or_gas f_o__"
_ _--_--_ -- Insulation

Figure 44. - Recommended construction of a nonyielding aft retaining band.

3.2.3 Ablation-Cooled Extensions

3.2.3.1 EXTENSION/NOZZLE JOINT

The extension attachment shall withstand all operating loads and shall not be
subjected to high-temperature environments.

Design the extension joint so that all handling, ground, flight, and thermal loads are carried

through the external structure (honeycomb or simple glass wrap) and not through the
ablative liner.

Use a positive interlocking attachment technique as shown in figure 23 with a long

heat-conduction path to the submerged mounting flange.
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3.2.3.2 HONEYCOMB SUPPORT STRUCTURE

Honeycomb structures shall not be subject to overpressures from gas evolution.

Interconnect all honeycomb channels through drilled passages leading to the atmosphere.

3.2.4 Radiation-Cooled Extensions

3.2.4.1 TEMPERATURE CONTROL

Radiation-cooled extensibns shall not be subject to failure induced by local
overheating.

Employ an injector that provides a fuel-rich boundary layer and minimum streaking.

Provide a smooth transition between the nozzle and the extension. To obtain high
emissivity, oxidize and roughen the outer wall surface, or use an emissivity coating.

3.2.4.2 MATERIAL COMPATIBILITY

The material in radiation-cooled extensions shall be compatible with the
combustion gases.

For operation below 2000°F, specify metals that do not react rapidly with the combustion

gases (e.g., L-605, N-155, or titanium alloy AMS 4917).

For operation above 2000°F, employ protectively coated refractory liners (e.g., NAA-85 on
columbium C- 103).

3.2.4.3 NOZZLE/EXTENSION JOINT

The nozzle/extension joint shah be nonyielding and provide for thermal growth.

Use closely spaced high-temperature clamping bolts such as those fabricated from Rene 41.

Make the heat-conduction path long enough to maintain the joint temperature below the
limit for elastomeric seals.

Pressure-assisted seals such as Naflex or K seals should be utilized in flight hardware if

elastomeric seals will not work. Consult reference 48 for specific design practices. Use
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simpleasbestosor elastomeric seals for heavy-duty development hardware that does not
reach high temperatures during the test.

In low-thrust rocket chambers, with a nozzle extension joint up to 4 in. in diameter, prevent

axial movement by using buttress threads in a threaded collar that has segmented fingers to

absorb thermal deflections without yielding.

Do not subject flight-type joints to side loads induced by sea-level testing of a nozzle
extension.

3.2.5 Circumferential Manifolds

3.2.5.1 MANIFOLD HYDRAULICS

Manifolds shall maintain a uniform static pressure that provides uniform flow

through the manifold bleedoff ports.

Keep the fluid velocities in the manifold as low as possible, preferably less than 60 fps for

liquids and less than Mach 0.25 for gases.

Incorporate several tangential inlets or multiple low-velocity radial inlets (fig. 24) in the

manifold design.

For a single-inlet configuration, a tapered manifold and a tangential inlet (fig. 25) is

recommended. Tapering the manifold increases the cost since the fabrication becomes more
difficult. When only a few units are made, a circular torus in which the cross section is made

to vary by boring the inner walls off center will accomplish approximately the same result.

If a single radial inlet is used, a tapered manifold with splitter vanes or deflector plates is

recommended. Do not use a single radial inlet for high-velocity fluid without making

provisions for reducing the static-pressure variation in the vicinity of the inlet.

For a given design, calculate as closely as possible the local pressure and velocity fields
within the manifold and the resulting bleed-port flowrates, using available information and

techniques such as those in references 53 and 54. Then measure the actual bleed-port

flowrates with either cold-flow mockups or actual hardware.

Avoid the requirement for a flow splitter by reducing the incoming velocity head. In the

final stagnation region, increase the flow resistance in or downstream of_he bleedoff ports.
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3.2.5.2 VANES, SPLITTERS, DAMS, AND STRUCTURAL SUPPORTS

3.2.5.2.1 Turning Vanes

Turning vanes shall minimize maMistribution of manifoM pressure.

Design turning vanes by the method of reference 49. Experimentally verify the manifold

pressure profile over the range of operating conditions. Provide for easy replacement,
repositioning, and recontouring of turning vanes.

Large manifolds should have provisions for minimizing pressure variations around the

manifold without moving the turning vanes. Install easily removable plugs in auxiliary
turning vanes (fig. 27). Measure the manifold pressure distribution with various

combinations of the plugs removed to obtain the configuration with minimum pressure

gradient. Provide for the ports in the structural design of the manifold.

3.2.5.2.2 Flow Splitters

Flow splitters shall provide an equal division of flow in 'manifoMs with
nonsymmetrical inlet conditions.

The flow splitter is basically a fix for an existing design that for various reasons cannot be

redesigned. In any new design, avoid the need for a flow splitter by using a symmetrical
entrance for the manifold or by reducing the incoming velocity head.

If a flow splitter must be used, experimentally determine the size, shape, and location of the

splitter that provides equal distribution of flow. Measure the pressure in each branch of the

manifold downstream of the splitter, and obtain the pressure profile across the entire
operating range. Adjust the flow splitter until the desired flow split is achieved.

3.2.5.2.3 Dams

Full or partial dams shall minimize variations in manifoM cross velocity.

Insert a partial or a full dam near the stagnation point opposite the manifold inlet,or insert
dams between multiple inlet locations.

3.2.5.2.4 Structural Supports

Structural supports for manifoMs shall prevent structural failure of the manifold,

but shall not result in flow maldistribution that leads to performance loss,

combustion instability, or wall overheating.
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External supportsor heavierwalls are recommendedover internal supportswhenever
possible. Use integral vanes, splitters, dams, and structural ties whenever possible.

For welded-in turning vanes and splitters, the butt weld is first choice when it can be used,

and next the full-penetration fillet weld. Avoid the fillet weld except under fight loading and

low vibration. Examples of these welds are given in figure 30.

For welded-in-dams, use the joints of figures 32(a), (b), and (c) for designs that are

internally accessible and the joints of figures 32(d) and (e) for designs that are internally
inaccessible. The fillet weld should be avoided, except possibly for very light loading and

low-vibration conditions.

Avoid large unsupported sections, particularly flat ones. If such sections must be used,

incorporate flutter dampeners as shown in figure 31.

3.2.5.3 HOT-GAS MANIFOLD

3.2.5.3.1 Manifold Outlet

The system for introducing the turbine exhaust gas into the nozzle shall minimize

the disturbance to the main jet.

Introduce the turbine gas into the nozzle through gaps in the nozzle wall (e.g., fig. 45(a)) or

parallel to the mainjet through an annulus at the nozzle exit (fig. 45(b)), or use a
film-cooled extension.

zle tube wall

Ranl fold shell_Every other tube
looped to provide

II/'- Trepped

Turbine /_ propel lants.

exhaust

(=) Looped tube

ozzle

(b) Annulus at hozzle exit

Figure45. - Two methods recommendedfor introducing turbineexhaustgasinto nozzle.
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3.2.5.3.2 Manifold Drainage

Turbine exhaust manifolds for noncryogenic
propellants.

propellants shall not trap

Do not use a turbine exhaust manifold and tube-wall configuration such as that in figure

45(a) for noncryogenic propellants. Use the exit dump method (fig. 45(b)), or a film-cooled
extension.

3.2.5.3.3 Thermal Growth

Hot-gas manifoMs and associated joints shall allow for thermal expansion.

Use sliding-pin, A-frame, or other designs that allow unrestrained thermal expansion of the
heated portion of the manifold.

Absorb thermal deflections in bending in relatively flexible members such as the flame
shield in figure 33 or the baseplate in figure 46.

_ase

Tu rb I ne

exhaust

Exhaust-gas
manifold

Baseplate

Figure 46. - Manifold design for absorbing thermal deflections in flexible baseplate.
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Distribute the thermal loading at highly stressed points with doublers or similar devices.

Specify ductile materials (e.g., 347 CRES, Hastelloy C, Inconel 625, or L-605) with an

elongation of 20 percent or more across the operating temperature range.

Allow larger-than-normal clearances between tubes or bands and the manifold structure to
account for shrinkage from multiple welding, thermal distortion during brazing or

operation, and difficulty in fitting together large flexible ducts.

3.2.5.3.4 Manifold Seals

Seals for hot-gas manifolds shall provide for flange warpage from thermal and

mechanical loads.

Self-energizing pressure-actuated seals are recommended for hot-gas manifolds,

3.2.5.4 COOLANT-RETURN MANIFOLD

3.2.5.4.1 Drainage

The coolant-retii_'n manifoM shall be easily drained and cleaned.

Use a continuous coolant-return manifold rather than individual tube elbows. Install drain

plugs so that the manifold can be drained with the engine upright or horizontal.

3.2.5.4.2 Tube-to-Manifold Joint

3.2.5.4.2.1 Tube Ends and ManifoM Openings

Tube ends shall conform closely to the manifoM opening to which they are to be

mated.

Insert circular tubes into round holes in the manifold (fig. 34(b)) rather than square tubes

into a slot (fig. 34(a)). Expand the tube end while it is in place within the manifold.

Ensure that the brazing characteristics of the plating material are compatible with the tube
and manifold materials. Tube and manifold materials should have similar brazing

characteristics and expansion coefficients; preferably both tubes and manifolds should be
constructed of the same material.

Include a braze sample during production furnace brazing to verify the resulting material

properties.

82

t



Use furnace brazing in preference to hand brazing of tube bundles.

3.2.5.4.2.2 Braze Joint

The braze ]oint between the manifolds and tubes on the hot-gas side shall provide
a continuous conduction path between the hot wall and the coolant.

Maintain the recommended braze joint for the full length of the joint on the hot gas side.
This practice will preclude breaks in the connection between the hot wall and the coolant

tube as shown in figure 35 .

Remove manifolds from direct contact with the exhaust gas (fig. 47) to reduce the

heat-transfer rate at the braze joint, thereby eliminating the criticality of obtaining a
continuous braze.

Tube --_

it gas
raze failure

_/ _Eroslon area

-Hanlfold

(a) Manifold exposed to direct

flow of hot gas

t gas

(b) Hanlfold removed from contact

with direct flow of hot gas

Figure 47. - Method for avoiding failure of manifold from exposure to hot-gas flow.

3.2.6 Nozzle Attachments

3.2.6.1 ATTACHMENT TECHNIQUES

The method for making attachments to the nozzle shall distribute the loads to the

tubes and preclude local stress concentrations.

Connect attachments to nozzle structural members (e.g., manifolds or retaining bands)
rather than directly to the tubes.
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If attachments must be made directly to the tubes, braze them; do not weld attachments to

thin-wall tubes. The configurations shown in figure 48(a), not those of figure 48(b), are

recommended for brazing attachments to tubes. Note that the recommended method is to

braze only one side.

(a) Good - attachment configuration and brazing on one side
produce acceptable stresses on tubes

(b) Bad - attachment configuration and braz|ng on both sides

produce hlgh local stresses on tubes

Figure 48. - Good and bad methods for brazing attachments to tubes.

3.2.6.1.1 Welding

Weldments to thin nozzle structural parts shall not induce distortion and internal
stresses.

For structural members that are hardened during the furnace braze cycle, weld the

attachments to the structural members before furnace brazing.

3.2.6.2 EXTENglON JOINT FOR LARGE CHAMBERS

The nozzle/nozzle-extension joint for large thrust chambers shall be sealable,

assemblable, and lightweight.

Design to keep differential expansion within limits. Design the flanges with oversized bolt
holes and radial bolt slots on one or both flanges. Use alignment tools in assembling the

configuration.

Make the flange bolt spacing equal to the bolt-head diameter plus twice the flange thickness.
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Use elastomeric seals up to 500°F. Use tadpole-type asbestos-and-wire mesh seals above

500°F and groove one flange face (fig. 36).

3.2.7 Instrumentation Provisions

3.2.7.1 TEMPERATURE MEASUREMENT

3.2.7.1.1 Thermocouples

3.2. ZI.I.1 Installation

Nozzle tube bundles shall provide for the installation of thermocouples at

required stations.

Before stacking the chamber tubes, predimple the tube next to the tube on which the

thermocouple is to be installed. Place Refrasil cords in the dimples during furnace brazing.
See reference 71 for detailed recommendations.

For thermocouples positioned _e,ar the nozzle exit, run the thermocouple along the tube
crevice from the nozzle exit (fig. 49).

Hlcro=alnlature

thermocoupl e -_

Hot gas

Braze-_

ID4

m

Tube

Braze

Hollow tube
P

Figure 49. - Method for mounting thermocouple Rear nozzle exit.
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Avoid inserting thermocouples between tubes in already brazed thrust chambers. If a
thermocouple must pierce an already brazed tubular thrust chamber, use a heated tungsten

probe to melt the tube-to-tube braze and produce a local tube-wall indentation on the tube

next to the tube on which the thermocouple is to be installed. See reference 52 for detailed
installation recommendations.

Braze the thermocouple to the tube crown with a miniature argon-plasma arc torch. During

installation of the thermocouple, monitor temperature with the thermocouple itself.

3.2. 7.1.1.2 Thermocouple Type

Thermocouples installed on tube hot walls shall withstand installation, handling,

and operation without damage.

A damage-resistant thermocouple assembly such as the armored microminiature design (ref.

72) is recommended. With the flattened-tip thermocouple, use annealed thermocouples.
Tack weld thetip of the thermocouple to the tube crown, Braze the thermocouple to the

tube at an angle and fill the dimple and cover the exposed thermocouple sheath with braze

material by means of a miniature argon-plasma arc torch. Consult reference 52 for detailed

recommendations or reference 59 for the NASA electroplating technique.

Avoid thermocouple installations that project from tli_ thrust-chamber outer surface

significantly, or installations that have sufficient mass to be prone to vibration damage.

3.2.7.1.2 Braze Patches

Braze patches used as temperature indicators shall show whether a specific

temperature limit is exceeded.

Braze patches must be compatible with the base tube material. Select the material for the

required limiting temperature on the basis of remelt data in reference 60.

3.2.7.2 PRESSURE MEASUREMENT

3.2.7.2.1 Installation'

• ,, Nozzle tube bundles shall provide for pressure taps at required stations.

Dimple the tubes at the designated points during tube forming process. Place ceramic rod or

Refrasil cord in each dimple during brazing, so that the opening for the pressure tap is not

filled by the braze.
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3.2.7.2.2 Measurement

The pressure pickup shall provide accurate measurement of static pressure of the
nozzle wall.

After furnace brazing of the tube assembly, insert a pressure-pickup tube into each dimple

and braze in place. Make sure that the pressure tube does not project into the hot-gas
stream. Use a short run from tap to recording device.

3.2.7.3 STRESS (STRAIN) MEASUREMENT

The stress-measurement materials and procedures shall provide accurate values for
stress in the nozzle structure.

Select a strain gage that is appropriate for the application and is accurately calibrated. Use

trained specialists and approved techniques for installation. Avoid placing a gage at a

location exposed to elevated temperatures or steep temperature gradients. Protect the gage
from exposure to moisture and from air currents that could change its temperature. Avoid
small gages (< 0.030 in. in length).

For determination of stress concentrations, carefully select the areas that will be subject to

maximum stress concentration. These places often are in the fillet of tube-to-band joints and
at locations where attachments to the tubes have been made.

3.3 TESTING

3.3.1 Full-Scale Testing

3.3.1.1 GROUND TESTING

Upper-stage engines required to run at ground-level back pressures either shall not
develop separated flow or shall be capable of absorbing the loads associated wlth
unstable asymmetric flow separation.

For altitude engines, use bolt-on nozzle extensions that can be removed during ground

testing to reduce the area ratio sufficiently to preclude separated flow. Provide restraining

arms from tffe nozzle to the test stand to absorb startup side loads in high-area-ratio engines
with slow thrust buildup. Make the arms remotely detachable after start to allow gimbaling.
On the basis of the worst case of asymmetric separation, size the nozzle structure to resist
collapse or being forced out of round.
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Useafast-startsystemfor high-area-rationozzles.

Eliminate flow separationon marginalnozzlesduring mainstageby employinga short
bolt-ondiffuser.

Avoidnozzleswith adversewall-pressuregradients.

3.3.1.2 PERFORMANCE EVALUATION

Altitude performance extrapolated from ground-test data shall be based on results

for which the extent of overexpansion is accurately known, and the pressure used

for evaluating nozzle performance shall approximate the nozzle total pressure.

Compute altitude performance from ground-test results on nozzles with unseparated flow.

Use a sta_tic-pressure distribution along the combustion-chamber wall as shown in figure 37
to obtain the nozzle total pressure for hot-firing tests.

3.3.2 Model Testing

3.3.2.1 MODEL SIZE

The size of the cold-flow test model shall facilitate accurate fabrication and
reliable measurements.

Make the models as large as possible to obtain close reproduction of the desired wall

geometry. The chamber pressure should be high enough to allow accurate static-pressure
measurements. The large model and high pressure will provide more accurate thrust and
flowrate measurements.

3.3.2.2 PROPERTIES OF TEST GAS

The gas used for cold-flow tests shall not condense in the nozzle and shall

simulate the average _ of the hot gas during expansion.

Use dry filtered air except for tests involving nozzles with very high area ratios. Exercise

caution in interpreting performance data obtained with high-molecular-weight gases such as

CF 4. Avoid CF 4 in nozzles with low total pressure or in small annular nozzles where
nonequilibrium effects may be large.
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Whentestingnozzleswith air at arearatiosgreaterthan 15, total pressures should be low

enough to reduce condensation of air in the nozzle. Detect condensation by measuring wall
static pressure at several different total pressures; do not rely on optical methods to detect
condensation of air in cold-flow models.

3.3.2.3 FLOWFIELD OBSERVATION

Optical methods for coM-flow-model testing shall provide qualitative flow field
visualization.

A spark-illuminated schlieren system is recommended for observing the flowfields of the
nozzle model.
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Symbol

A
c

A
e

A t

A t

alt

Cd

Cd pot

D

Dt

Gt

L

M

Ra

Rt

R
u

Re

sl

vac

APPENDIX A

GLOSSARY

Definition

area of combustion chamber at maximum cross section

geometric flow area of nozzle at exit plane

geometric flow area of nozzle at throat

aerodynamic flow area of nozzle throat (geometric flow area corrected

for the effects of nonuniform transonic flow)

altitude

discharge coefficient

discharge coefficient (potential flow)

diameter of nozzle at exit

diameter of nozzle at throat

throat gap (width of annular throat)

nozzle length

Mach number (ratio of fluid velocity to velocity of sound in the fluid)

radius of nozzle wall downstream of throat

radius of nozzle throat

radius of nozzle wall upstream of throat

Reynolds number (ratio of momentum forces to viscous forces in fluid

flow)

sea level

vacuum

axial distance from a given reference plane

91



Symbol

Ot

d0/dx

Term

ablative cooling

aerodynamic performance

aerodynamic throat area

aerospike nozzle

altitude engine

annular nozzle

area ratio

asymmetric separation

base area

base cavity

Definition

nozzle divergence half-angle

ratio of specific heat at constant pressure to specific heat at constant
volume

nozzle expansion area ratio, e = A¢/A t

momentum thickness of the boundary layer; this thickness represents a

loss in momentum of the exhaust gas

rate of change of momentum thickness with respect to axial distance

along, the wall

Mach angle (the angle between the direction of supersonic flow and the

characteristic line)

Definition

use of a material on the nozzle wall that evaporates or chars during

engine firing and thereby cools the nozzle

,1

portion of the nozzle performance due to nozzle divergence efficiency
(the degree of perfection of the nozzle contour)

effective flow area of the throat, which is less than the geometric flow
area because the flow is not uniform

annular nozzle that allows the gas to expand from one surface- a

centerbody spike - to ambient pressure

rocket engine that is designed to operate at high-altitude conditions

nozzle with an annular throat formed by an outer wall and a

centerbody wall

ratio of the geometric flow area of the nozzle exit to the geometric

flow area of the nozzle throat; also called expansion area ratio

separation of the exhaust jet from the nozzle wall nonuniformly or at

localized regions not in the same plane

truncated area of a plug nozzle

the opening in the base of a plug nozzle
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Teriil

base pressure

bell nozzle

bifurcation joint

boattail

boundary layer

"cat-eyes"

channel construction

characteristic line

coupon

dam

discharge coefficient

displacement thickness

divergence efficiency

downcomer

E-D nozzle

tL¢

Definition

static pressure in the base cavity

nozzle with a circular opening for a throat and an axisymmetric

contoured wall downstream of the throat that gives the nozzle a

characteristic bell shape

junction of two tubes or passages with a single larger tube or passage

aft end of a rocket that contains the propulsion system and its interface

with vehicle tankage

film of gas or liquid next to the nozzle wall; its thickness is usually

taken as the radial distance from the wall to a point at which gas

velocity reaches 99% of freestream gas velocity

long, narrow openings between coolant tubes for the purpose of
discharging turbine exhaust gases

use of machined grooves in the nozzle wall to carry coolant

mathematical line inclined to the direction of flow used to compute the
flowfield

a piece of material, representative of the material used in a part, that
accompanies the part during processing and subsequently is used as a

test specimen to evaluate properties

baffle or flat plate inserted perpendicularly into a fluid manifold in

order to partially or fully separate two streams approaching from
opposite directions

ratio of the actual flowrate to the ideal flowrate calculated on the basis
of one-dimensional inviscid flow

distance by which the outer streamlines are shifted (displaced) as a
result of the formation of the boundary layer

ratio of thrust calculated for the actual nozzle contour (potential flow)
to the thrust of an ideal-flow nozzle

nozzle tube in which coolant flows in the same direction as the exhaust

gas

expansion-deflection nozzle, which has an annular throat that

discharges exhaust gas with a radial outward component
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Term

equilibrium composition

expansion ratio, or

expansion area ratio

external expansion

flow angle

flowfield .:

flow separation

frozen composition

holdup volume

ideal nozzle _ •

internal expansion

K seal

kinetic perfgrmance

momentum thickness

MR ¸

Naflex seal

nonequilibrium composition

Now Rockwell International Corporation.

: Definition ,._ _.

chemical composition that the exhaust gas would attain if given a
sufficient time for reactants to achieve chemical balance

_see area ratio , , . :'_

I

gas expansion from the throat directly without a controlled expansion
wall

direction of gas flow at any point in the nozzle referred to nozzle axis

•aerodynamic and thermodynamic states of the gas flow in the nozzle

detachment of the exhaust-gas flow from the nozzle wall

chemical composition of the exhaust gas that does not change during

expansion

large-capacity propellant supplyreservoir

nozzle that provides theoretic_illy perfect performance for the given
area ratio when analyzed on th6lbasis of one-dimensional point-source

flow

gas expansion within a controlled expansion wall or shroud

flexible metal seal shaped like a K _,

that portion of the nozzle performance that depends dn the;equilibrium

state of the chemical reaction during gas expansion

thickness of the potential flow with a momentum equal to that lost in

the boundary layer as a result of wall shear forces

mass flowrate of oxidizer : _ ._ ' -
.... mixture ratiO:

mass flowrate of fuel

flexible metal seal developed by North American Aviation, Inc.* "

chemical composition of the exhaust gas resulting from incomplete
chemical reaction of the products of combustion in the exhaust gas '
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Term

nozzle extension

oil canning

omega joint

overexpansion

plug nozzle

potential flow

PrandtI-Meyer angle

pressure ratio

radius ratio

Rayleigh flow

recompression

reference streamline

regenerative cooling

fight characteristic

shroud

slip effects

slipstream

Defmition

.nozzle structure that is added to the main nozzle in order to increase

expansion area ratio or to provide a change in nozzle construction

flexing of unsupported sheet metal

expansion joint shaped like the upper-case Greek letter omega in the

wall of a manifold;used to relieve stresses due to thermal growth

expansion of the gas to an ambient pressure that is higher than that for

which the nozzle was designed

annular nozzle that discharges exhaust gas with a radial inward

component: a truncated aerospike

flow with effects of viscosity not considered

angle through which the supersonic flow turns during expansion

ratio of chamber pressure to ambient pressure

r_i9 of radius of curvature of the wall in the throat section to the

throat radius (1/2 throat diameter)

steady frictionless flow in a constant-area duct with heat being added or
removed

reflection of exhaust gas from ambient jet boundary

path of the flow along which the velocity is assumed for transonic flow
calculations

cooling of the nozzle wall with one of the propellants before it is
burned in the combustion chamber

characteristic line that travels downstream and to the right of the
supersonic flow direction

short extension of the outer wall of the plug nozzle downstream of the
throat

discontinuities in momentum and temperature in the boundary layer
due to rarefaction of the exhaust gas

flow of ambient air around the nozzle
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Term Definition

stacking assembling the coolant tubes vertically on a mandrel that simulates the

chamber/nozzle contour; this procedure facilitates fitting and adjusting

the tubes to the required contour prior to brazing.

storable propellant a propellant with a vapor pressure such that the propellant can be

stored in a specified environment (earth or space) at moderate ullage

pressures without significant loss over a specified period of time

streamline line tangent to the velocity vector at each point in a flowfield; in

steady flow, a streamline is the pathline of the fluid element

tadpole seal a flange seal whose cross section resembles the shape of a tadpole

taper gradual reduction in or englargement of coolant-tube diameter

taper ratio ratio of maximum coolant-tube diameter to minimumtube diameter;

usually kept below 4

temperature jump

thermally perfect gas

difference in temperature between the nozzle wall and the layer of gas
molecules next to the wall, a result of rarefaction of the exhaust gas

gas that obeys the equation of state PV = RT and has specific heats

with values independent of temperature

throat gap width of the annular passage at the throat of an annular nozzle

tube crown portion of the coolant tube that forms the outer wall of the cooling

jacket

tube-wall construction nozzle wall that consists of a series of parallel metal tubes that carry
coolant

upcomer nozzle tube in which coolant flows in a direction opposite to that of

the exhaust gas flow

velocity slip velocity of the gas molecules next to the nozzle wall, a result of

rarefaction of the exhaust gas

Material ! Identification

columbium C-103 alloy of 89 percent columbium, 10 percent hafifium, and 1 percent
titanium

lAdditional information on metallic materials herein can be found in the Aerospace Material Specifications, SAE, Two

Pennsylvania Plaza, New York, NY.; in MIL-HDBK-5B, Metallic Materials and Elements for Aerospace Vehicle Structures,
Dept. of Defense, Washington, D.C., Sept. 1971; and in Metals Handbook (8th ed.), Vol. 1: Properties and Selection of
Metals, Am. Society for Metals (Metals Park, Ohio), 1961.
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Material

CRES"

Dalic plating

Hastelloy C

Inconel 625

718

X-750

IRFNA

L-605

LH 2

LOX

MMH

MON

N-155

NAA-85

N 2H 4

N204

NARIoy Z

Refrasil

Rene 41

Identification

corrosion-resistant steel

selective metal-plating process for small areas; the method employs a
swab wetted with electrolyte and wrapped around a movable electrode

trade name of Stellite Division of Cabot Corporation for austenitic

nickel-molybdenum-chromium-iron alloy (AMS 5530C)

trade names of International Nickel Co. for nickel-base alloys (AMS

5599, 5597A, and 5598, resp.)

inhibited red fuming nitric acid, propellant grade per MIL-P-7254

cobalt-base alloy per AMS 5537A

liquid hydrogen, propellant grade per MIL-P-27201

liquid oxygen, propellant grade per MIL-P-25508

monomethylhydrazine, propellant grade per MIL-P-27404

mixed oxides of nitrogen

iron-base alloy per AMS 5532B

designation of North American Aviation, Inc.* for a sprayable metal
coating made from a slurry of powder containing 98 percent aluminum

hydrazine, propellant grade per MIL-P-26536

nitrogen tetroxide, propellant grade per MIL-P-26539

silver-zirconium-copper alloy developed by North American Rockwell

Corp.*

trade name of HITCO for a group of high-purity silica-base materials
having outstanding high-temperature resistance; acronym for refractory
silica

trade name of General Electric Co. for an austenitic

nickel-chromium-cobalt-molybdenum alloy

*Now Rockwell International Corporation.
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Material

RP-I

silicone RTV

UDMH

Waspaloy

50:50

347

Identification

kerosene-base hydrocarbon fuel, propellant grade per MIL-P-25576

room-temperature-vulcanizing organosiloxane polymer

unsymmetrical dimethylhydrazine, propellant grade per MIL-P-25604

trade name of Pratt & Whitney Aircraft for austenitic nickel-base alloy

(AMS 5544B)

mixture of 50% hydrazine and 50% unsymmetrical dimethylhydrazine,

propellant grade per MIL-P-27402

designation for columbium-stabilized austenitic stainless steel

ABBREVIATIONS

(kganization

AIAA

ARS

ASME

CPIA

ICRI_

JANNAF

M.I.T.

NACA

NAR

SAE

WPAFB

Identification

American Institute of Aeronautics and Astronautics

American Rocket Society

American Society of Mechanical Engineers

Chemical Propulsion Information Agency

Interagency Chemical Rocket Propulsion Group

Joint Army-Navy-NASA-Air Force

Massachusetts Institute of Technology

National Advisory Committee for Aeronautics

North American Rockwell Corporation*

Society of Automotive Engineers

Wright-Patterson Air Force Base

*Now Rockwell International Corporation.
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APPENDIX B

Conversion of U.S. Customary Units to SI Units

Physical quantity
,g,

Angle

Area

Force

Length

Load

Mass

Pressure

Roll moment

Specific impulse

Temperature

Temperature
difference

Thrust
,,

U. S. customary

unit

degree

2
in.

Ibf

ft

in.

lbf

,' ¢ ,

psi (lbf/in. 2)

ft-lbf

lb f-sec/lbm

SI unit

radian

2
cm

N

m

cm

N

kg

N/cm 2

N-m

N-sec/kg

Conversion

factor a

1.745x10 -2

6.452

4.448

-1
3.048x 10

2.54 ._ ,_ ._,

4.448

4.536x10 -I

6.895x10 -I

1.356 .=

9.807

oF

oF

lbf

K

K

N

K = 5 (o F + 459.67)

4.448

aMultiply value given in U.S. customary unit by conversion factor to obtain equivalent value in SI unit. For a complete

listing of conversion factors for basic physical quantities, see Mechtly, E. A.: The International System of Units.

Physical Constants and Conversion Factors. Second Revision, NASA SP-7012, 1973. , _;

99



IO0



REFERENCES

1. Anon.: Liquid Rocket Engine Self-Cooled Combustion Chambers. NASA Space Vehicle Design

Criteria Monograph, NASA SP-8124 (to be published).

2. Anon.: Solid Rocket Motor Nozzles. NASA Space Vehicle Design Criteria Monograph, NASA
SP-8115, June 1975.

3. Back, L. H.; Cuffel, R. F.; and Massier, P. F.: Influence of Contraction Section Shape and Inlet Flow

Direction on Supersonic Nozzle Flow and Performance. J. Spacecraft Rockets, vol. 9, no. 6, June

1972, pp. 420-427.

4. Anon.: User's Manual for Subsonic-Transonic Flow Analysis. PWA 2888, Suppl. 4, Pratt & Whitney

Aircraft Div., United Aircraft Corp. (East Hartford, CT), 1966.

5. Kliegel, J. R.; and Levin, J. N.: Transonic Flow in Small Throat Radius of Curvature Nozzles. AIAA

J., vol. 7, no. 7, July 1969, pp. 1375-1378.

6. Cuffel, R. F.; Back, L. H.; and Massier, P. F.: The Transonic Flowfield in a Supersonic Nozzle with

Small Throat Radius of Curvature. AIAA J., vol. 7, no. 7, July 1969, pp. 1364-1366.

7. Back, L. H.; and Cuffel, R. F.: Flow Coefficients for Supersonic Nozzles With Comparatively Small

Radius of Curvature Throats. J. Spacecraft Rockets, vol. 8, no. 2, February 1971, pp. 196-198.

8. Oswatitsch, K.; and Rothstein, W.: Flow Pattern in Converging-Diverging Nozzle. NACA TM X-1215,
1949.

9. Kliegel, J. R.; and Quan, V.: Convergent-Divergent Nozzle Flows. AIAA J., vol. 6, no. 9, September
1968, pp. 1728-1734.

10. Back, L. H.; Massier, P. F.; and Cuffel, R. F.: Flow Phenomena and Convective Heat Transfer in a

Conical Supersonic Nozzle. J. Spacecraft Rockets, vol. 4, no. 8, August 1967, pp. 1040-1047.

11. Back, L. H.; Massier, P. F.; and Gier, H. L.: Comparisons of Measured and Predicted Flows Through

Conical Supersonic Nozzles, With Emphasis on the Transonic Region. AIAA J., vol. 3, no. 9,
September 1965, pp. 1606-1614.

12. Back, L. H.; and Cuffel, R. F.: Detection uf Oblique Shocks in a Conical Nozzle With a Circular-are

Throat. AIAA J., vol. 4, no. 12, December 1966, pp. 2219-2221.

13. Back, L. H.; Cuffel, R. F.; and Massier, P. F.: Laminarization of a Turbulent Boundary Layer in

Nozzle Flow - Boundary Layer and Heat Transfer Measurements With Wall Cooling. J. Heat Transfer,
Trans. ASME, Series C, vol. 92, August 1970, pp. 333-344.

101



14.Auiberg,J.H.;Hamilton,S.A.,Migdal,D.;andNilson,E.N.:TruncatedPerfect Nozzles in Optimum
Nozzle Design. ARS J., vol. 3, no. 5, May 1961, pp. 614-620.

15. Miele, A.: Theory of Optimum Aerodynamic Shapes. Academic Press (New York), 1965, pp.
151-183.

16. Rao, G. V. R.: Exhaust Nozzle Contour for Optimum Thrust. Jet Propulsion, vol. 28, no. 6, June

1958, pp. 377-382.

17.

18.

t9.

Taylor, Allan A.; and Hoffman, Joe D.: Design of Maximum Thrust Nozzles for Nonequilibrium

Chemically Reacting Flow. AIAA J., vol. 12, no. 10, October 1974, pp. 1299-1300.

Ranson, V. H.; Hoffman, J. D.; and Thompson, H. D.: Three-Dimensional Supersonic Nozzle Flow

Field Calculations. J. Spacecraft Rockets, vol. 7, no. 4, April 1970, pp. 458-462.

Alber, I. E.: Comparison and Evaluation of Computer Program Results for Rocket Engine
Performance Prediction. SN-82, Dynamic Sciences Div., Marshall Industries (Monrovia, CA), April

1968.

20. Elliott, O. G.; Bartz, D. R.; and Silver, S.: Calculation of Turbulent Boundary Layer Growth and Heat

_Transfer in Axisymmetric NoZzles. Tech. Rep. 32-387, Jet Propulsion Lab., Calif. Inst. Technology

(Pasadena, CA), February 1963.

21. Waldman, B. J.; and Shuster, E. B.: Fluorine-Hydrogen Perfqrmance Evaluation, Phase I, Part II:

Nozzle Performance Analysis and Demonstration. Final Report, NASA CR-72038, Rocketdyne Div.,

North American Aviation, Inc. (Canoga Park, CA), April 1967.

22.

23.

Migdal, D.; and Landis, F.: Characteristics of Conical Supersonic Nozzles. ARS J., vol. 32, no. 12,

December 1962, pp. 1898-1901.

Anon.: J-2 Bimonthly Progress Report, November-December 1965. R-6300-3, Rocketdyne Div.,

North American Aviation, Inc., January 1966.

24. Schilling, M. T.: Flow Separation in a Rocket Nozzle. M. S. Thesis, University of Buffalo, June 1962.

25. Crocco, L.; and Probstein, R.: The Peak Pressure Rise Across an Oblique Shock Emerging from a

Turbulent Boundary Layer Over a Plane Surface. Princeton University (Princeton, NJ), March 1964.

26. Schmucker, R. H.: Status of Flow Separation Prediction in Liquid Propellant Rocket Nozzles. NASA

TM X-64890, November 1974.

27.

28.

Touryan, K. J.; and Drake, R. M., Jr.: Flow Investigations in Delaval Supersonic Nozzles at Very Low
Pressures. Rarefied Gas Dynamics, Vol. II, Proc. Third Int'l Symposium on Rarefied Gas Dynamics

(Paris, France) 1962, J. A. Laurmann, ed., Academic Press, Inc., 1963, pp. 402-434.

Massier, P. F.; Back, L. H.; Noel, M. B.; and Saheli, F.: Viscous Effects on the Flow Coefficient for a

Supersonic Nozzle. AIAA J., vol. 8, no. 3, March 1970, pp. 605-607.

102



29. Spisz,E.W.;Brinich,P.F.;andJack,J.R.:ThrustCoefficientsof Low-ThrustNozzles.NASATN
D-3056,October1965.

30.Rae,W.J.: SomeNumericalResultsonViscousLow-DensityNozzleFlowsin theSlender-Channel
Approximation.AIAAJ.,vol.9,no.5,May1971,pp.811-820.

31. Anon.:TurbopumpSystemsfor LiquidRocketEngines.NASASpaceVehicleDesignCriteria
Monograph,NASASP-8107,August1974.

32.Martinez,A.: Aerodynamic Nozzle Study, Vol. 1. R-6582, Rocketdyne Div., North American

Aviation, Inc., July 1966.

33. Alber, I. E.; and Lees, L.: Integral Theory for Supersonic Turbulent Base Flows. AIAA J., vol. 6, no.

7, July 1968, pp. 1343-1351.

34. Chow, W.; and Addy, A.: Interaction Between Primary and Secondary Streams of Supersonic Ejector

Systems and Their Performance Characteristics. AIAA J., vol. 2, no. 4, April 1964, pp. 686-695.

35. Wagner, W. R.; and Shoji, J. M.: Advanced Regenerative Cooling Techniques for Future Space
Transportation Systems. AIAA Paper No. 75-1247, SAE 11 th Propulsion Conf. (Anaheim, CA), Sept.

29 -Oct. 1, 1975.

36. Anon.: Liquid Rocket Engine Fluid-Cooled Combustion Chambers. NASA Space Vehicle Design

Criteria Monograph, NASA SP78087, April 1972.

37. Zienkiewicz, O. C.; and Cheung, U. K.: The Finite Element Method in Structural and Continuum
Mechanics. McGraw-Hill Publishing Company, Ltd. (London), 1967.

38. Sellers, J. P., Jr.: Gaseous Film Cooling with Multiple Injection Stations. AIAA J., vol. 1, no. 9,

September 1963, pp. 2154-2156.

39. Tribus, M.; and Klein, J.: Forced Convection from Non-isothermal Surfaces. Ch. 8, Heat Transfer

Symposium, University of Michigan Press (Ann Arbor, MI), 1953.

40. Burns, W. K., and Stollery, J. L.: The Influence of Foreign Gas Injection and Slot Geometry on Film

Cooling Effectiveness. Intl. J. Heat and Mass Transfer, vol. 12, August 1969, pp. 935-951.

41. Kacker, S. C.; and Whitelaw, J. H.: The Effect of Slot Height and Slot Turbulence Intensity on the
Effectiveness of the Uniform Density, Two-Dimensional Wall Jet. J. Heat Transfer, Trans. ASME,

Series C, vol. 90, 1968, pp. 469-475.

42. Sivasegaram, S.; and Whitelaw, J. H.: Film Cooling Slots: The Importance of Lip Thickness and

Injection Angle. J. Mech. Engrg. Science, vol. 11, no. 1, February 1969, pp. 22-27.

43. Mukerjee, T.; and Martin, B. W.: Film Cooling of Air Injection Through a Backward-Facing Annular

Tangential Slot into a Supersonic Axisymmetric Parallel Diffuser. Proceedings of the 1968 Heat
Transfer and Fluid Mechanics Institute, Univ. of Washington (Seattle, WA), June 17-18, 1968.

103



44. Abramovitch,G.N.:TheTheoryofTurbulentJets.MITPress,1963.

45. Vulis,L. A.;andKashkarov,V.P.:TheoryofViscous-FluidJets.Moscow,1965.Availabletranslated
as FTD-HT-23-669-67(AD-673687),ForeignTechnology Div., Air Force Systems Command

(WPAFB, OH), Dec. 19, 1967.

46. Anon.: Welding, Resistance: Aluminum, Magnesium, etc.; Spot and Seam. Military Specification

MIL-W-6858C, Dept. of Defense, Oct. 20, 1964.

47. Senneff, John M.: Final Report for Space Shuttle Orbit Maneuvering Engine Reusable Thrust

Chamber Program. Rep. 8693-950-001, Bell Aerospace Co., Division of Textron, May 1975.

48. Anon.: Liquid Rocket Disconnects, Couplings, Fittings, Joints, and Seals. NASA Space Vehicle

Design Criteria Monograph, NASA SP-8119 (to be published).

49. Anon.: Aerospace Applied Thermodynamics Manual. Committee A-9, Aero-Space Environmental

Systems, SAE, January 1962.

50. Ornstein, H. L.; and Kunz, H. R.: Experimental Investigation of Heat Rejection Problems in Nuclear

Space Powerplants. Rep. PWA-2227, Pratt & Whitney Aircraft Div., United Aircraft Corp. (East
Hartford, CT), June 1963.

*51. Bockstahler, A. J.: S-4 Thrust Chamber Hot-Gas Wall Microminiature Thermocouple Test Results and

Analysis. CDR 6124-2000, Rocketdyne Div., North American Aviation, Inc., unpublished, December
1966.

*52. Blendermann, W. H.; and Garrett, A. J.: Procedure for Installation of Microminiature Thermocouples

on J-2, J-2SE, and J-2X Thrust Chambers to Obtain Coolant Tube Hot Gas Side Wall Temperatures.

IL 6124-2026, Rocketdyne Div., North American Aviation, Inc., unpublished, May 1966.

*53. Gill, G. S.; Koenig, W. R.; and Garrett, A. J.: Installation of Microminiature Thermocouples in Liquid
Rocket Thrust Chambers. NAR 50633, Rocketdyne Div., North American Aviation, Inc.,

unpublished, April 1966.

*54. Garrett, A. J.: Limitation of Probing Between Thrust Chamber Tubes With a Tungsten Spatula for the

Purpose of Inserting Microminiature Thermocouples. CDM 6124-2006, Rocketdyne Div., North

American Aviation, Inc., unpublished, July 1966.

*55. Lum, J. H.: Tube Dimple Effect on Coolant Flow and Maximum Gas Side Wall Temperature. IL
6124-4075, Rocketdyne Div., North American Aviation, Inc., unpublished, June 1966.

*56. Garrett, A. J.: Installation of Gas-Side-Wall Thermocouples in the Toroidal Type Thrust Chamber.
CDM 6124-2003, Rocketdyne Div., North American Aviation, Inc., unpublished, March 1966.

*Dossier for design criteria monograph "Liquid Rocket Engine Nozzles." Unpublished. Collected source material available
for inspection at NASA Lewis Research Center, Cleveland, Ohio.

104



*57. Cook,R.T.: ObjectivesandSignificanceof LocalHeatTransferMeasurementsin Tubular Thrust

Chambers; Previous Experience, Required Accuracy, and the Influence of Installation Induced Errors.

APM 6-168-138, Rocketdyne Div., North American Aviation, lnc., unpublished, May 1966.

*58. Bockstahler, A. J.: Resistance Method for Determining Hot Junction Location in Microminiature

Thermocouple Assemblies. CDR 6124-2006, Rocketdyne Div., North American Aviation, Inc,,
unpublished, August 1966.

59. Huff, R. G.: A Thermocouple Technique for Measuring Hot-Gas-Side Wall Temperatures in Rocket

Engines. NASA TN D-5291, June 1969.

*60. Roeder, E. R.: Brazing Alloys and Solders for Temperature Indicators of Tubular Wall Thrust

Chamber Hot Gas Side Wall Temperature Profiles During Hot Firing Tests. MPR 6-175-178,

Rocketdyne Div., North American Aviation, Inc., unpublished, March 1966.

"61. Cook, R. T.: Brazing Alloys as Temperature Indicators; Influence of Braze Alloy Thickness on

Indicated Temperatures. APM 6-168-29, Rocketdyne Div., North American Aviation, Inc.,
unpublished, March 1966.

*62. Cook, R. T.: Post Test Observation of Braze Alloy Deposits (Temperature Indicators) on High Pc
(SA-6201) 45 ° Nickel Thrust Chamber. APM 6-178-74, Rocketdyne Div., North American Aviation,

Inc., unpublished, April 1966.

63. JANNAF Performance Standardization Working Group: JANNAF Rocket Engine Performance Test

Data Acquisition and Interpretation Manual. CPIA Publ. 245, April 1975.

64. Anon.: JANNAF Rocket Engine Performance Methodology Sample Cases. CPIA Publications 245 and
246 Supplement, April 1975.

65. Waldman, B. J.: Fluorine-Hydrogen Performance Evaluation, Phase II: Space-Storable Propellant

Performance Demonstration and Analysis. Rinal Report, NASA CR-72542, Rocketdyne Div., North
American Rockwell Corp., April 1969.

66. Harding, L. J.: A Digital Computer Program for Condensation in Expanding One-Component Flows.
ARL 65-58, Aerospace Research Laboratories (WPAFB, OH), March 1965.

67. Pieper, J'. L.: Performance Evaluation Methods for Liquid Propellant Rocket Thrust Chambers,
Appendix A. CPIA Publ. 132, November 1966.

68. Pieper, J. L.: ICRPG Liquid Propellant Thrust Chamber Performance Evaluation Manual- Final

Report, Oct. 15, 1967-Sept. 30, 1968. CPIA Publ. 178 (AD 843051), Sept. 30, 1968.

69. Hurty, W. C.; and Rubinstein, M. F.: Dynamics of Structures. Prentice-Hall, Inc. (Englewood Cliffs,
NJ), 1964.

Dossier for design criteria monograph "Liquid Rocket Engine Nozzles." Unpublished. Collected source material available
for inspection at NASA Lewis Research Center, Cleveland, Ohio.

105



70. Papell, S. S.; and Trout, A. M.: Experimental Investigation of Air Film Cooling Applied to An
Adiabatic Wall by Means of an Axially Discharging Slot. NASA TN D-9, August 1959.

"71. Garrett, A. J.: Recommended Method for Providing Access to Gas Side Wall Thermocouple
Installations in New Thrust Chamber. IL 6124-2009, Rocketdyne Div., North American Aviation,

Inc., unpublished, February 1966.

*72. Anon.: HT Micro-Miniature Thermocouples. Product Data 4336 - Thermocouples.

Baldwin - Lima - Hamilton (Waltham, Mass.), December 1960.

*Dossier for design criteria monograph "Liquid Rocket Engine Nozzles." Unpublished. Collected source material _vailable
for inspection at NASA Lewis Research Center, Cleveland, Ohio.

106



ENVIRONMENT

SP-8005

SP-8010

SP-8011

SP-8013

SP-8017

SP-8020

SP-8021

SP-8023

SP-8037

SP-8038

SP-8049

SP-8067

SP-8069

SP-8084

SP-8085

SP-8091

SP-8092

j.. ,

NASASPACE VEHICLE DESIGN CRITERIA
MONOGRAPHS ISSUED TO DATE

Solar Electromagnetic Radiation, Revised May 1971

Models of Mars Atmosphere (1974), Revised December 1974

Models of Venus Atmosphere (1972), Revised September 1972

Meteoroid Environment Model-1969 (Near Earth to Lunar Surface),

March 1969

Magnetic Fields-Earth and Extraterrestrial, March 1969

Surface Models of Mars (1975), Revised September 1975

Models of Earth's Atmosphere (90 to 2500 kin), Revised March 1973

Lunar Surface Models, May 1969

Assessment and Control of Spacecraft Magnetic Fields, September 1970

Meteoroid Environment Model-1970 (Interplanetary and Planetary),
October 1970

The Earth's Ionosphere, March 197 l

Earth Albedo and Emitted Radiation, July 1971

The Planet Jupiter (1970), December 1971

Surface Atmospheric Extremes (Launch and Transportation Areas),
Revised June 1974

The Planet Mercury (1971), March 1972

The Planet Saturn (1970), June 1972

Assessment and Control of Spacecraft Electromagnetic Interference,
June 1972

107



SP-8103

SP-8105

SP-8111

SP-8116

SP-8117

SP-8118

STRUCTURES

SP-800!

SP-8002

SP-8003

SP-8004

SP-8006

SP-8007

SP-8008

SP-8009

SP-8012

SP-8014

SP-8019

SP-8022

SP-8029

SP-8030

SP-8031

SP-8032

ThePlanetsUranus,Neptune,andPluto(1971),November1972

SpacecraftThermalControl,May1973

AssessmentandControlofElectrostaticCharges,May1974

The Earth's Trapped Radiation Belts, March 1975

Gravity Fields of the Solar System, April 1975

Interplanetary Charged Particle Models (1974), March 1975

Buffeting During Atmospheric Ascent, Revised November 1970

Hight-Loads Measurements During Launch and Exit, December 1964

Flutter, Buzz, and Divergence, July 1964

Panel Flutter, Revised June 1972

Local Steady Aerodynamic LoadsDuring Launch and Exit, May 1965

Buckling of Thin-Walled Circular Cylinders, Revised August 1968

Prelaunch Ground Wind Loads, November 1965

Propellant Slosh Loads, August 1968

Natural Vibration Modal Analysis, September 1968

Entry Thermal Protection, August 1968

Buckling of Thin-Walled Truncated Cones, September 1968

Staging Loads, February 1969

Aerodynamic and Rocket-Exhaust Heating During Launch and Ascent,
May 1969

Transient Loads From Thrust Excitation, February 1969

Slosh Suppression, May 1969

Buckling of Thin-Walled Doubly Curved Shells, August 196 °

108

rJ
I



SP-8035

SP-8040

SP-8042

SP-8043

SP-8044

SP-8045

SP-8046

SP-8050

SP-8053

SP-8054

SP-8055

SP-8056

SP-8057

SP-8060

SP-8061

SP-8062

SP-8063

SP-8066

SP-8068

SP-8072

SP-8077

SP-8079

Wind Loads During Ascent, June 1970

Fracture Control of Metallic Pressure Vessels, May 1970

Meteoroid Damage Assessment, May 1970

Design-Development Testing, May 1970

Qualification Testing, May 1970

Acceptance Testing, April 1970

Landing Impact Attenuation for Non-Surface-Planing Landers, April
1970

Structural Vibration Prediction, June 1970

Nuclear and Space Radiation Effects on Materials, June 1970

Space Radiation Protection, June 1970

Prevention of Coupled Structure-Propulsion Instability (Pogo), October

1970

Flight Separation Mechanisms, October 1970

Structural Design Criteria Applicable to a Space Shuttle, Revised March
1972

Compartment Venting, November 1970

Interaction with Umbilicals and Launch Stand, August 1970

Entry Gasdynamic Heating, January 1971

Lubrication, Friction, and Wear, June 1971

Deployable Aerodynamic Deceleration Systems, June 1971

Buckling Strength of Structural Plates, June 1971

Acoustic Loads Generated by the Propulsion System, June 1971

Transportation and Handling Loads, September 1971

Structural Interaction with Control Systems, November 1971

109



SP-8082

SP-8083

SP-8095

SP-8099

SP-8104

SP-8108

GUIDANCEANDCONTROL

SP-8015

SP-8016

SP-8018 .....

SP-8024

SP-8026

SP-8027

SP-8028

SP-8033

SP-8034

SP-8036

SP-8047

SP-8058

SP-8059

SP-8065

Stress-Corrosion Cracking in Metals, August 1971

Discontinuity Stresses in Metallic Pressure Vessels, November 1971

Preliminary Criteria for the Fracture Control of Space Shuttle

Structures, June 1971

Combining Ascent Loads, May 1972

Structural Interaction With

January 1973

Transportation and Handling Systems,
a

Advanced Composite Structures, December 1974
J;

Guidance and Navigation for Entry Vehicles, November 1968

Effects of Structural Flexibility on Spacecraft Control Systems, April

1969 ....

Spacecraft Magnetic Torques, Mareh_1969

Spacecraft Gravitational Torq6_l!May 1969

Spacecraft Star Trackers, July 1970

Spacecraft Radiation Torques, October 1969

Entry Vehicle Control, November 1969

Spacecraft Earth Horizon Sensors, December 1969

Spacecraft Mass Expulsion Torques, December 1969

Effects of Structural Flexibility on Launch Vehicle Control Systems,

February 1970 _

Spacecraft Sun Sensors, June 1970

Spacecraft Aerodynamic Torques, January 1971

Spacecraft Attitude Control During Thrusting Maneuvers, February
1971

Tubular Spacecraft Booms (Extendible, Reel Stored), Februar_ 1971

110



SP-8070

SP-8071

SP-8074

SP-8078

SP.8086

SP-8096

SP.8098

SP-8102

CHEMICALPROPULSION

SP-8089

SP-8087

SP-8113

SP-8107

SP-8109

SP-8052

SP-8110

SP-8081

SP-8048

SP-8101

SP-8100

SP-8088

SP-8094

Spaceborne Digital Computer Systems, March 1971

Passive Gravity-Gradient Libration Dampers, February 1971

Spacecraft Solar Cell Arrays, May 1971

Spaceborne Electronic Imaging Systems, June 1971

Space Vehicle Displays Design Criteria, March 1972

Space Vehicle Gyroscope Sensor Applications, October 1972

Effects of Structural Flexibility on Entry Vehicle Control Systems,
June 1972

Space Vehicle Accelerometer Applications, December 1972

r

Liquid Rocket Engine Injectors, March 1976

Liquid Rocket Engine Fluid-Cooled Combustion Chambers, April 1972

Liquid Rocket Engine Combustion Stabilization Devices, November
1974

Turbopump Systems for Liquid Rocket Engines, August 1974

Liquid Rocket Engine Centrifugal Flow Turbopumps, December 1973

Liquid Rocket Engine Turbopump Inducers, May 1971

Liquid Rocket Engine Turbines, January 1974

Liquid Propellant Gas Generators, March 1972

Liquid Rocket Engine Turbopump Bearings, March 1971

Liquid Rocket Engine Turbopump Shafts and Couplings, September
1972

Liquid Rocket Engine Turbopump Gears, March 1974

Liquid Rocket Metal Tanks and Tank Components, May 1974

Liquid Rocket Valve Components, August 1973

111



SP-8097

SP-8090

SP-8112

SP-8080

SP-8064

SP-8075

SP-8076

SP-8073

SP-8039

SP-8051

SP-8025

SP-8115

SP-8114

SP-8041

LiquidRocketValve Assemblies, November 1973

Liquid Rocket Actuators and Operators, May 1973

Pressurization Systems for Liquid Rockets, October 1975

Liquid Rocket Pressure Regulators, Relief Valves, Check Valves, Burst

Disks, and Explosive Valves, March 1973

Solid Propellant Selection and Characterization, June 1971

Solid Propellant Processing Factors in Rocket Motor Design, October
1971

Solid Propellant Grain Design and Internal Ballistics, March 1972

Solid Propellant Grain Structural Integrity Analysis, June 1973

Solid Rocket Motor Performance Analysis and Prediction, May 1971

Solid Rocket Motor Igniters, March 1971

Solid Rocket Motor Metal Cases, April 1970

Solid Rocket Motor Nozzles, June 1975

Solid Rocket Thrust Vector Control, December 1974

Captive-Fired Testing of Solid Rocket Motors, March 1971

_U.S. GOVERt_E_rrPRINTING OFFICE: 1976 - 735-004/17

112


